21 research outputs found

    Strength of the cervical spine in compression and bending

    No full text

    Surface roughness of Ti-6Al-4V parts obtained by SLM and EBM: Effect on the High Cycle Fatigue life

    Get PDF
    Selective Laser Melting (SLM) and Electron Beam Melting (EBM) are powder bed fusion processing which allows to build-up parts by successive addition of layers using 3D-CAD models. Among the advantages, are the high degree of freedom for part design and the small loss of material, which explain the increase of Ti-6Al-4V parts obtained by these processes. However, Ti-6Al-4V parts produced by SLM and EBM contain defects (surface roughness, porosity, tensile residual stresses) which decrease significantly the High Cycle Fatigue (HCF) life. In order to minimize the porosity and tensile residual stresses, post-processing treatments like Hot Isostatic Pressing (HIP) and Stress Relieving are often conducted. But the modification of the surface roughness by machining is very costly and not always possible, especially for parts with complex design. The aim of this work is to evaluate the effect of the surface roughness and microstructure of Ti-6Al-4V parts produced by SLM and EBM on the HCF life. Five sets of specimens were tested in tension-compression (R=-1; f=120Hz): Hot-Rolled (reference); SLM HIP machined; SLM HIP As-Built; EBM HIP machined; EBM HIP As-Built. For each condition, microstructure characterization, observation of the fracture surface of broken specimens and surface analysis were carried out respectively by Optical Microscope (OM), Scanning Electron Microscope (SEM) and 3D optical profilometer. Results of fatigue testing show a significant decrease of the HCF life mainly due to the surface roughness. Along with experimental testing, numerical simulations using FEM were conducted using the surface scans obtained by profilometry. Based on extreme values statistics of the crossland equivalent stress averaged on a critical distance, a methodology is proposed to take into account the effect of the surface roughness on the HCF life

    Domestic water carrying and its implications for health: a review and mixed methods pilot study in Limpopo Province, South Africa

    Get PDF
    Background: Lack of access to safe water remains a significant risk factor for poor health in developing countries. There has been little research into the health effects of frequently carrying containers of water. The aims of this study were to better understand how domestic water carrying is performed, identify potential health risk factors and gain insight into the possible health effects of the task. Methods: Mixed methods of data collection from six were used to explore water carrying performed by people in six rural villages of Limpopo Province, South Africa. Data was collected through semi-structured interviews and through observation and measurement. Linear regression modelling were used to identify significant correlations between potential risk factors and rating of perceived exertion (RPE) or self reported pain. Independent t-tests were used to compare the mean values of potential risk factors and RPE between sub-groups reporting pain and those not reporting pain. Results: Water carrying was mainly performed by women or children carrying containers on their head (mean container weight 19.5 kg) over a mean distance of 337 m. The prevalence of spinal (neck or back) pain was 69% and back pain was 38%. Of participants who carried water by head loading, the distance walked by those who reported spinal pain was significantly less than those who did not (173 m 95%CI 2-343; p = 0.048). For head loaders reporting head or neck pain compared to those who did not, the differences in weight of water carried (4.6 kg 95%CI -9.7-0.5; p = 0.069) and RPE (2.5 95%CI -5.1-0.1; p = 0.051) were borderline statistically significant. For head loaders, RPE was significantly correlated with container weight (r = 0.52; p = 0.011) and incline (r = 0.459; p = 0.018). Conclusions: Typical water carrying methods impose physical loading with potential to produce musculoskeletal disorders and related disability. This exploratory study is limited by a small sample size and future research should aim to better understand the type and strength of association between water carrying and health, particularly musculoskeletal disorders. However, these preliminary findings suggest that efforts should be directed toward eliminating the need for water carrying, or where it must continue, identifying and reducing risk factors for musculoskeletal disorders and physical injury

    Aging, Estrogen Loss and Epoxyeicosatrienoic Acids (EETs)

    Get PDF
    Inflammation is a key element in many cardiovascular diseases. Both estrogen loss, caused by menopause, and aging have inflammatory consequences. Epoxyeicosatrienoic acids (EETs) are anti-inflammatory molecules synthesized by various cytochrome P450 (Cyp) enzymes from arachidonic acid. EETs are in the third (Cytochrome P450) pathway of arachindonic acid metabolism, others being cyclooxygenases and lipoxygenases. We hypothesized that aging and estrogen loss would reduce levels of anti-inflammatory EETs. Adult (6 mo) and aged (22 mo) ovariectomized rats with (OP) and without (Ovx) 17-∃-estradiol replacement were used in this study. Mass spectrometry was used to measure levels of EETs and their metabolites, dihydroxyeicosatrienoic acids (DHETs). Levels of Cyp2C2, Cyp2C6, and Cyp2J2, the principal Cyps responsible for EETs synthesis, as well as soluble epoxide hydrolase (sEH), which metabolizes EETS to DHETs, were determined via western blot. Overall Cyp levels decreased with age, though Cyp2C6 increased in the liver. sEH was increased in the kidney with estrogen replacement. Despite protein changes, no differences were measured in plasma or aortic tissue levels of EETs. However, plasma 14,15 DHET was increased in aged Ovx, and 5,6 DHET in adult OP. In conclusion neither aging nor estrogen loss decreased the anti-inflammatory EETs in the cardiovascular system
    corecore