4 research outputs found

    Baltic Sea coastal erosion; a case study from the Jastrzębia Góra region

    Get PDF
    The coastline in the Jastrzębia Góra area can be divided into three major zones of general importance: a beach and barrier section, a cliff section, and a section protected by a heavy hydrotechnical construction. These areas are characterised by a diverse geology and origin, and hence different vulnerability to erosion. In addition, observations have demonstrated a different pace of erosion within each zone. Based on the results obtained by remote sensing methods (analysis of aerial photographs and maps), it has been determined that the coastline in the barrier area, i.e., to the west of Jastrzębia Góra, moved landwards by about 130 m, in a period of 100 years, and 80 m over about 50 years. A smaller displacement of the shoreline could be observed within the cliff. Between the middle of the twentieth and the start of the twenty-first centuries the shore retreated by about 25 m. However, in recent years, an active landslide has led to the displacement of the uppermost part of the cliff locally up to 25 m. Another issue is, functioning since 2000, a heavy hydrotechnical construction which has been built in order to protect the most active part of the cliff. The construction is not stable and its western part, over a distance of 50 m, has moved almost 2 m vertically downwards and c. 2.5 m horizontally towards the sea in the past two years. This illustrates that the erosional factor does not comprise only marine abrasion, but also involves land-based processes determined by geology and hydrogeology. Changes in the shoreline at the beach and barrier part are constantly conditioned by rising sea levels, the slightly sloping profile of the sea floor and low elevation values of the backshore and dune areas. Cliffs are destroyed by mass wasting and repetitive storm surges that are responsible for the removal of the colluvium which protects the coast from adverse wave effects. Presumably, mass movements combined with groundwater outflow from the cliff, plus sea abrasion cause destabilisation of the cliff protection construction

    Baltic Sea coastal erosion; a case study from the Jastrzębia Góra region

    No full text
    The coastline in the Jastrzębia Góra area can be divided into three major zones of general importance: a beach and barrier section, a cliff section, and a section protected by a heavy hydrotechnical construction. These areas are characterised by a diverse geology and origin, and hence different vulnerability to erosion. In addition, observations have demonstrated a different pace of erosion within each zone. Based on the results obtained by remote sensing methods (analysis of aerial photographs and maps), it has been determined that the coastline in the barrier area, i.e., to the west of Jastrzębia Góra, moved landwards by about 130 m, in a period of 100 years, and 80 m over about 50 years. A smaller displacement of the shoreline could be observed within the cliff. Between the middle of the twentieth and the start of the twenty-first centuries the shore retreated by about 25 m. However, in recent years, an active landslide has led to the displacement of the uppermost part of the cliff locally up to 25 m. Another issue is, functioning since 2000, a heavy hydrotechnical construction which has been built in order to protect the most active part of the cliff. The construction is not stable and its western part, over a distance of 50 m, has moved almost 2 m vertically downwards and c. 2.5 m horizontally towards the sea in the past two years. This illustrates that the erosional factor does not comprise only marine abrasion, but also involves land-based processes determined by geology and hydrogeology. Changes in the shoreline at the beach and barrier part are constantly conditioned by rising sea levels, the slightly sloping profile of the sea floor and low elevation values of the backshore and dune areas. Cliffs are destroyed by mass wasting and repetitive storm surges that are responsible for the removal of the colluvium which protects the coast from adverse wave effects. Presumably, mass movements combined with groundwater outflow from the cliff, plus sea abrasion cause destabilisation of the cliff protection construction

    Chronology of the last ice sheet decay on the southern Baltic area based on dating of glaciofluvial and ice-dammed lake deposits

    No full text
    The paper presents the results of the first OSL dating of glaciofluvial and ice-marginal lake sediments which occur between end moraines of the Słupsk Bank and the Polish coast. The sand and gravel of glaciofluvial deltas on the Słupsk Bank were deposited most likely during a period from 14.3 ±1.2 to 16.6 ±1.4 ka ago. The deposition of silty-sandy sediments of the ice-marginal lake is dated at 14.51 ±0.81 and 14.6 ±1.4 ka years. Likewise, dates ranging from 13.74 ±0.84 to 16.70 ±1.1 ka obtained from low sandy ridges, related to the southern range of the ice-marginal lake in the Gardno-Łeba Lowland, indicate the most likely timing of their deposition. It can be concluded that a short stop of the ice sheet on the Słupsk Bank took place approximately 15.2 ka ago, which could be correlated with the position of the ice sheet front in central Skåne and in northern Lithuania at that time. Older and younger results were also obtained, except the dates mentioned above. The older ages show little sunlight exposure of sediments during their deposition. The younger dates indicate a marine origin of the sediments and show that some parts of glaciofluvial sediments were redeposited and exposed to sunlight at a later stage, most probably when dead-ice blocks were melting

    Picking Up the PiecesHarmonising and Collating Seabed Substrate Data for European Maritime Areas

    No full text
    The poor access to data on the marine environment is a handicap to government decision-making, a barrier to scientific understanding and an obstacle to economic growth. In this light, the European Commission initiated the European Marine Observation and Data Network (EMODnet) in 2009 to assemble and disseminate hitherto dispersed marine data. In the ten years since then, EMODnet has become a key producer of publicly available, harmonised datasets covering broad areas. This paper describes the methodologies applied in EMODnet Geology project to produce fully populated GIS layers of seabed substrate distribution for the European marine areas. We describe steps involved in translating national seabed substrate data, conforming to various standards, into a uniform EMODnet substrate classification scheme (i.e., the Folk sediment classification). Rock and boulders form an additional substrate class. Seabed substrate data products at scales of 1:250,000 and 1:1 million, compiled using descriptions and analyses of seabed samples as well as interpreted acoustic images, cover about 20% and 65% of the European maritime areas, respectively. A simple confidence assessment, based on sample and acoustic coverage, is helpful in identifying data gaps. The harmonised seabed substrate maps are particularly useful in supraregional, transnational and pan-European marine spatial planning
    corecore