129 research outputs found

    Microscopic origin of the mobility enhancement at a spinel/perovskite oxide heterointerface revealed by photoemission spectroscopy

    Get PDF
    The spinel/perovskite heterointerface γ\gamma-Al2_2O3_3/SrTiO3_3 hosts a two-dimensional electron system (2DES) with electron mobilities exceeding those in its all-perovskite counterpart LaAlO3_3/SrTiO3_3 by more than an order of magnitude despite the abundance of oxygen vacancies which act as electron donors as well as scattering sites. By means of resonant soft x-ray photoemission spectroscopy and \textit{ab initio} calculations we reveal the presence of a sharply localized type of oxygen vacancies at the very interface due to the local breaking of the perovskite symmetry. We explain the extraordinarily high mobilities by reduced scattering resulting from the preferential formation of interfacial oxygen vacancies and spatial separation of the resulting 2DES in deeper SrTiO3_3 layers. Our findings comply with transport studies and pave the way towards defect engineering at interfaces of oxides with different crystal structures.Comment: Accepted as Rapid Communications in Physical Review

    Near-Infrared Spectroscopy Measured Cerebral Blood Flow from Spontaneous Oxygenation Changes in Neonatal Brain Injury

    Get PDF
    Neonates with hypoxic-ischaemic (HI) brain injury were monitored using a broadband near-infrared spectroscopy (NIRS) system in the neonatal intensive care unit. The aim of this work is to use the NIRS cerebral oxygenation data (HbD = oxygenated-haemoglobin - deoxygenated-haemoglobin) combined with arterial saturation (SaO2) from pulse oximetry to calculate cerebral blood flow (CBF) based on the oxygen swing method, during spontaneous desaturation episodes. The method is based on Fick's principle and uses HbD as a tracer; when a sudden change in SaO2 occurs, the change in HbD represents a change in tracer concentration, and thus it is possible to estimate CBF. CBF was successfully calculated with broadband NIRS in 11 HIE infants (3 with severe injury) for 70 oxygenation events on the day of birth. The average CBF was 18.0 ± 12.7 ml 100 g-1 min-1 with a range of 4 ml 100 g-1 min-1 to 60 ml 100 g-1 min-1. For infants with severe HIE (as determined by magnetic resonance spectroscopy) CBF was significantly lower (p = 0.038, d = 1.35) than those with moderate HIE on the day of birth

    Association of Short Antenatal Corticosteroid Administration-to-Birth Intervals With Survival and Morbidity Among Very Preterm Infants: Results From the EPICE Cohort

    Get PDF
    Administration-to-birth intervals of antenatal corticosteroids (ANS) vary. The significance of this variation is unclear. Specifically, to our knowledge, the shortest effective administration-to-birth interval is unknown. Objective:To explore the associations between ANS administration-to-birth interval and survival and morbidity among very preterm infants. Design, Setting, and Participants: The Effective Perinatal Intensive Care in Europe (EPICE) study, a population-based prospective cohort study, gathered data from 19 regions in 11 European countries in 2011 and 2012 on 4594 singleton infants with gestational ages between 24 and 31 weeks, without severe anomalies and unexposed to repeated courses of ANS. Data were analyzed November 2016. Exposure: Time from first injection of ANS to delivery in hours and days. Main Outcomes and Measures: Three outcomes were studied: in-hospital mortality; a composite of mortality or severe neonatal morbidity, defined as an intraventricular hemorrhage grade of 3 or greater, cystic periventricular leukomalacia, surgical necrotizing enterocolitis, or stage 3 or greater retinopathy of prematurity; and severe neonatal brain injury, defined as an intraventricular hemorrhage grade of 3 or greater or cystic periventricular leukomalacia. Results: Of the 4594 infants included in the cohort, 2496 infants (54.3%) were boys, and the mean (SD) gestational age was 28.5 (2.2) weeks and mean (SD) birth weight was 1213 (400) g. Mortality for the 662 infants (14.4%) unexposed to ANS was 20.6% (136 of 661). Administration of ANS was associated with an immediate and rapid decline in mortality, reaching a plateau with more than 50% risk reduction after an administration-to-birth interval of 18 to 36 hours. A similar pattern for timing was seen for the composite mortality or morbidity outcome, whereas a significant risk reduction of severe neonatal brain injury was associated with longer administration-to-birth intervals (greater than 48 hours). For all outcomes, the risk reduction associated with ANS was transient, with increasing mortality and risk for severe neonatal brain injury associated with administration-to-birth intervals exceeding 1 week. Under the assumption of a causal relationship between timing of ANS and mortality, a simulation of ANS administered 3 hours before delivery to infants who did not receive ANS showed that their estimated decline in mortality would be 26%. Conclusions and Relevance:Antenatal corticosteroids may be effective even if given only hours before delivery. Therefore, the infants of pregnant women at risk of imminent preterm delivery may benefit from its use.The research received funding from grant agreement 259882 from the European Union Seventh Framework Program (2007-2013). Additional funding in France was provided by the French Institute of Public Health Research/Institute of Public Health and its partners, including the French Health Ministry, the National Institute of Health and Medical Research, the National Institute of Cancer, and the National Solidarity Fund for Autonomy, by grant ANR-11-EQPX-0038 from the National Research Agency through the French Equipex Program of Investments in the Future, and by the PremUp Foundation; in Poland, by 2012-2015 allocation of funds for international projects from the Polish Ministry of Science and HigherEducation; and in Sweden, by regional agreementon medical training and clinical research betweenStockholm County Council and Karolinska Institutetand by the Department of Neonat al Medicine at theKarolinska University Hospital

    Neonatal cerebrovascular autoregulation.

    Get PDF
    Cerebrovascular pressure autoregulation is the physiologic mechanism that holds cerebral blood flow (CBF) relatively constant across changes in cerebral perfusion pressure (CPP). Cerebral vasoreactivity refers to the vasoconstriction and vasodilation that occur during fluctuations in arterial blood pressure (ABP) to maintain autoregulation. These are vital protective mechanisms of the brain. Impairments in pressure autoregulation increase the risk of brain injury and persistent neurologic disability. Autoregulation may be impaired during various neonatal disease states including prematurity, hypoxic-ischemic encephalopathy (HIE), intraventricular hemorrhage, congenital cardiac disease, and infants requiring extracorporeal membrane oxygenation (ECMO). Because infants are exquisitely sensitive to changes in cerebral blood flow (CBF), both hypoperfusion and hyperperfusion can cause significant neurologic injury. We will review neonatal pressure autoregulation and autoregulation monitoring techniques with a focus on brain protection. Current clinical therapies have failed to fully prevent permanent brain injuries in neonates. Adjuvant treatments that support and optimize autoregulation may improve neurologic outcomes

    Practical guidelines for rigor and reproducibility in preclinical and clinical studies on cardioprotection

    Get PDF
    The potential for ischemic preconditioning to reduce infarct size was first recognized more than 30 years ago. Despite extension of the concept to ischemic postconditioning and remote ischemic conditioning and literally thousands of experimental studies in various species and models which identified a multitude of signaling steps, so far there is only a single and very recent study, which has unequivocally translated cardioprotection to improved clinical outcome as the primary endpoint in patients. Many potential reasons for this disappointing lack of clinical translation of cardioprotection have been proposed, including lack of rigor and reproducibility in preclinical studies, and poor design and conduct of clinical trials. There is, however, universal agreement that robust preclinical data are a mandatory prerequisite to initiate a meaningful clinical trial. In this context, it is disconcerting that the CAESAR consortium (Consortium for preclinicAl assESsment of cARdioprotective therapies) in a highly standardized multi-center approach of preclinical studies identified only ischemic preconditioning, but not nitrite or sildenafil, when given as adjunct to reperfusion, to reduce infarct size. However, ischemic preconditioning—due to its very nature—can only be used in elective interventions, and not in acute myocardial infarction. Therefore, better strategies to identify robust and reproducible strategies of cardioprotection, which can subsequently be tested in clinical trials must be developed. We refer to the recent guidelines for experimental models of myocardial ischemia and infarction, and aim to provide now practical guidelines to ensure rigor and reproducibility in preclinical and clinical studies on cardioprotection. In line with the above guideline, we define rigor as standardized state-of-the-art design, conduct and reporting of a study, which is then a prerequisite for reproducibility, i.e. replication of results by another laboratory when performing exactly the same experiment
    corecore