63 research outputs found

    Both Penicillium expansum and Trichothecim roseum Infections Promote the Ripening of Apples and Release Specific Volatile Compounds

    Get PDF
    Blue mold and core rot caused by Penicillium expansum and Trichothecium roseum are major diseases of apple fruit in China; however, their differential aggressiveness in apples and effect on fruit postharvest physiology are unclear. The effects of colonization of apples cv. Red Delicious by both pathogens were compared to physiological parameters of ripening and release of volatile compounds (VOCs). P. expansum colonization showed increased aggressiveness compared to T. roesum colonization of apple fruits. P. expansum enhanced colonization occurred with differential higher ethylene production and respiratory rate evolution, lower membrane integrity and fruit firmness in correspondence with the colonization pattern of inoculated apples. Moreover, P. expansum caused lower contents of total soluble solid and titratable acid, and higher malondialdehyde compared with T. roesum colonization. While both pathogen infections enhanced VOCs release, compared with T. roseum inoculated apples, P. expansum inoculated apple showed a higher total VOCs production including alcohols, aldehydes and esters, being the C6 alcohols, aldehydes and esters amount. PLS-DA analysis indicated that hexanoic acid was the most important factor to distinguish the inoculated fruits from the controls. Interestingly, propyl acetate and hexyl benzoate, and undecylenic acid and hexadecane were only identified in the P. expansum and T. roseum inoculated fruits, respectively. Taken together, our findings indicate that both fungi inoculations promote apple fruit ripening and release specific VOCs; moreover, apple fruits are more susceptible to P. expansum colonization than T. roesum

    How alkalinization drives fungal pathogenicity

    Get PDF
    pH governs most, if not all, processes of life. In fungi, ambient pH acts as a potent regulator of growth and development [1]. Studies conducted primarily in the 2 model organisms Saccharomyces cerevisiae and Aspergillus nidulans have cemented our understanding of how fungi sense and respond to pH. More recently, pH has emerged as a key player in the control of fungal pathogenicity. Infections caused by fungi are often associated with a pH shift in the surrounding host tissue [2±4]. Extracellular alkalinization contributes to fungal virulence, but the underlying mechanisms are not fully understood. Recent studies have revealed new and unexpected ways by which fungi induce host alkalinization to increase their infectious potential. Here, we provide a brief overview of the mechanisms that govern pH signaling in fungi and highlight how recent findings have advanced our understanding of pathogen-induced alkalinization and its role during infection. We also discuss the emerging view that intracellular pH (pHi) acts as a master switch to govern fungal development and pathogenicity

    Carbon regulation of environmental pH by secreted small molecules that modulate pathogenicity in phytopathogenic fungi

    Get PDF
    [EN]Fruit pathogens can contribute to the acidification or alkalinization of the host environment. This capability has been used to divide fungal pathogens into acidifying and/or alkalinizing classes. Here, we show that diverse classes of fungal pathogens—Colletotrichum gloeosporioides, Penicillium expansum, Aspergillus nidulans and Fusarium oxysporum—secrete small pH-affecting molecules. These molecules modify the environmental pH, which dictates acidic or alkaline colonizing strategies, and induce the expression of PACC-dependent genes. We show that, in many organisms, acidification is induced under carbon excess, i.e. 175 mm sucrose (the most abundant sugar in fruits). In contrast, alkalinization occurs under conditions of carbon deprivation, i.e. less than 15 mm sucrose. The carbon source is metabolized by glucose oxidase (gox2) to gluconic acid, contributing to medium acidification, whereas catalysed deamination of non-preferred carbon sources, such as the amino acid glutamate, by glutamate dehydrogenase 2 (gdh2), results in the secretion of ammonia

    Nutritional factors modulating plant and fruit susceptibility to pathogens: BARD workshop, Haifa, Israel, February 25–26, 2018

    Get PDF
    32 p.-3 fig.The molecular dialog between fungal pathogens and their plant hosts is governed by signals from the plant, secreted pathogen effectors and enzymes, and the plant immune system. There is an increasing awareness that nutritional factors are also central to fungal-plant interactions. Nutritional factors include carbon and nitrogen metabolism, local pH and redox state, and manipulation of host metabolism by secreted pathogen effectors. A diverse combination of approaches from genetics, biochemistry and fungal and plant cell biology addresses these questions, and a workshop whose abstracts accompany this note was held in 2018 to bring these together. Questions were asked about how the lifestyles and nutritional strategies of eukaryotic filamentous phytopathogens are related to the metabolic architectures and pathogenic processes affecting both plant hosts and their pathogens. The aim for future work will be to provide metabolism-based strategies for pathogen control.We thank the US-Israel Binational Agricultural Research and Development Fund (BARD) for funding the workshop (number W-104-17).Peer reviewe

    Special Issue “Interplay between Fungal Pathogens and Harvested Crops and Fruits”

    No full text
    The interplay between fungal pathogens and harvest crops is important in determining the extent of food losses following the storage and transport of crops to consumers. The specific factors modulating the activation of colonization are of key importance to determining the initiation of fungal colonization and host losses. It is clear nowadays from the wide number of transcription studies in colonized fruits that pathogenicity in postharvest produce is not only the result of activation of fungal pathogenicity factors but is significantly contributed to fruit maturity and ripening. In this editorial summary of the Special Issue “Interplay between Fungal Pathogens and Harvested Crops and Fruits”, we present a short summary of future research directions on the importance of the interplay between fruit and pathogens and nine published papers (one review and eight original research papers), covering a wide range of subjects within the mechanism of pathogenicity by postharvest pathogens, including transcriptome analysis of pathogenesis, pathogenicity factors, new antifungal compounds and food toxin occurrence by pathogens. This summary may lead the reader to understand the key factors modulating pathogenicity in fruits

    Virulence regulation of phytopathogenic fungi by ph

    Get PDF
    15 p.- 6 fig.Significance: Postharvest pathogens can start its attack process immediately after spores land on wounded tissue, whereas other pathogens can forcibly breach the unripe fruit cuticle and then remain quiescent for months until fruit ripens and then cause major losses. Recent Advances: Postharvest fungal pathogens activate their development by secreting organic acids or ammonia that acidify or alkalinize the host ambient surroundings. Critical Issues: These fungal pH modulations of host environment regulate an arsenal of enzymes to increase fungal pathogenicity. This arsenal includes genes and processes that compromise host defenses, contribute to intracellular signaling, produce cell wall-degrading enzymes, regulate specific transporters, induce redox protectant systems, and generate factors needed by the pathogen to effectively cope with the hostile environment found within the host. Further, evidence is accumulating that the secreted molecules (organic acids and ammonia) are multifunctional and together with effect of the ambient pH, they activate virulence factors and simultaneously hijack the plant defense response and induce program cell death to further enhance their necrotrophic attack. Future Directions: Global studies of the effect of secreted molecules on fruit pathogen interaction, will determine the importance of these molecules on quiescence release and the initiation of fungal colonization leading to fruit and vegetable losses. © 2013, Mary Ann Liebert, Inc.We acknowledge the support of the US-Israel Binational Agricultural Research and Development Fund (BARD) during several stages of our work.Peer reviewe

    Cross-Talk Between Host And Fungus In Postharvest Situations And Its Effect On Symptom Development

    No full text
    The fruit and vegetable production industry has undergone major structural changes during recent years owing to new consumer expectations. The pressure to diminish fungicide residues on fruits and vegetables at all points along the supply chain presents even more problems than that of other agricultural products. At present, growers have to conform with regulations that limit undesirable biocide residues while, at the same time, choosing treatments that will maintain the quality of their produce

    Apple Intrinsic Factors Modulating the Global Regulator, LaeA, the Patulin Gene Cluster and Patulin Accumulation During Fruit Colonization by Penicillium expansum

    No full text
    The mycotoxin patulin is produced in colonized tissue by Penicillium expansum during storage of apples and is significantly affected by environmental factors that contribute to its accumulation. Few reports have, however, examined the effect of natural intrinsic factors associated with the fruit on the production of patulin. Here, we find that with advancing maturity, Golden Delicious apples show increased concentrations of total soluble solids (TSS) from 14 to 17% associated with the increased expression of the global transcription factor involved in regulation of secondary metabolite biosynthesis in filamentous fungi, laeA expression and patulin accumulation. However, the apple cultivar Granny Smith, with similar TSS values but differing in pH levels and malic acid concentrations, showed reduced expression levels of laeA and the patulin biosynthesis gene cluster (pat genes) and patulin accumulation, suggesting a complexity of host factors contribution to patulin accumulation during P. expansum colonization. To start elucidating these apple intrinsic factors, we examined their in vitro impact on laeA and pat gene expression concomitant with patulin synthesis. Increasing sucrose concentrations from 15 to 175 mM repressed laeA and pat gene expression and patulin production. However, this affect was modified and often reversed and sometimes accentuated by changes in pH, or the addition of malic acid or the major apple phenolic compounds, chlorogenic acid and epicatechin. While the increase in malic acid from 0 to 1% increased laeA and pat gene expression, the decrease in pH from 3.5 to 2.5 reduced their expression. Also the increased laeA and pat genes expressions at increasing epicatechin concentrations from 0 to 1 mM, was reversed by increasing sucrose concentrations, all together suggesting the complexity of the interactions in vivo

    Bacterial Quorum-Quenching Lactonase Hydrolyzes Fungal Mycotoxin and Reduces Pathogenicity of Penicillium expansum—Suggesting a Mechanism of Bacterial Antagonism

    No full text
    Penicillium expansum is a necrotrophic wound fungal pathogen that secrets virulence factors to kill host cells including cell wall degrading enzymes (CWDEs), proteases, and mycotoxins such as patulin. During the interaction between P. expansum and its fruit host, these virulence factors are strictly modulated by intrinsic regulators and extrinsic environmental factors. In recent years, there has been a rapid increase in research on the molecular mechanisms of pathogenicity in P. expansum; however, less is known regarding the bacteria–fungal communication in the fruit environment that may affect pathogenicity. Many bacterial species use quorum-sensing (QS), a population density-dependent regulatory mechanism, to modulate the secretion of quorum-sensing signaling molecules (QSMs) as a method to control pathogenicity. N-acyl homoserine lactones (AHLs) are Gram-negative QSMs. Therefore, QS is considered an antivirulence target, and enzymes degrading these QSMs, named quorum-quenching enzymes, have potential antimicrobial properties. Here, we demonstrate that a bacterial AHL lactonase can also efficiently degrade a fungal mycotoxin. The mycotoxin is a lactone, patulin secreted by fungi such as P. expansum. The bacterial lactonase hydrolyzed patulin at high catalytic efficiency, with a kcat value of 0.724 ± 0.077 s−1 and KM value of 116 ± 33.98 ÎŒM. The calculated specific activity (kcat/KM) showed a value of 6.21 × 103 s−1M−1. While the incubation of P. expansum spores with the purified lactonase did not inhibit spore germination, it inhibited colonization by the pathogen in apples. Furthermore, adding the purified enzyme to P. expansum culture before infecting apples resulted in reduced expression of genes involved in patulin biosynthesis and fungal cell wall biosynthesis. Some AHL-secreting bacteria also express AHL lactonase. Here, phylogenetic and structural analysis was used to identify putative lactonase in P. expansum. Furthermore, following recombinant expression and purification of the newly identified fungal enzyme, its activity with patulin was verified. These results indicate a possible role for patulin and lactonases in inter-kingdom communication between fungi and bacteria involved in fungal colonization and antagonism and suggest that QQ lactonases can be used as potential antifungal post-harvest treatment

    Fruit Diseases

    No full text
    • 

    corecore