6 research outputs found

    The tetrazole analogue of the auxin indole-3-acetic acid binds preferentially to TIR1 and not AFB5

    Get PDF
    Auxin is considered one of the cardinal hormones in plant growth and development. It regulates a wide range of processes throughout the plant. Synthetic auxins exploit the auxin-signalling pathway and are valuable as herbicidal agrochemicals. Currently, despite a diversity of chemical scaffolds all synthetic auxins have a carboxylic acid as the active core group. By applying bio-isosteric replacement we discovered that indole-3-tetrazole was active by surface plasmon resonance (SPR) spectrometry, showing that the tetrazole could initiate assembly of the TIR1 auxin co-receptor complex. We then tested the tetrazole’s efficacy in a range of whole plant physiological assays and in protoplast reporter assays which all confirmed auxin activity, albeit rather weak. We then tested indole-3-tetrazole against the AFB5 homologue of TIR1, finding that binding was selective against TIR1, absent with AFB5. The kinetics of binding to TIR1 are contrasted to those for the herbicide picloram, which shows the opposite receptor preference as it binds to AFB5 with far greater affinity than to TIR1. The basis of the preference of indole-3-tetrazole for TIR1 was revealed to be a single residue substitution using molecular docking, and assays using tir1 and afb5 mutant lines confirmed selectivity in vivo. Given the potential that a TIR1-selective auxin might have for unmasking receptor-specific actions, we followed a rational design, lead optimisation campaign and a set of chlorinated indole-3-tetrazoles was synthesised. Improved affinity for TIR1 and the preference for binding to TIR1 was maintained for 4- and 6-chloroindole-3-tetrazoles, coupled with improved efficacy in vivo. This work expands the range of auxin chemistry for the design of receptor-selective synthetic auxins

    Intrinsic disorder and conformational co-existence in auxin co-receptors

    Get PDF
    AUXIN/INDOLE 3-ACETIC ACID (Aux/IAA) transcriptional repressor proteins and the TRANSPORT INHIBITOR RESISTANT 1/AUXIN SIGNALING F-BOX (TIR1/AFB) proteins to which they bind act as auxin coreceptors. While the structure of TIR1 has been solved, structural characterization of the regions of the Aux/IAA protein responsible for auxin perception has been complicated by their predicted disorder. Here, we use NMR, CD and molecular dynamics simulation to investigate the N-terminal domains of the Aux/IAA protein IAA17/AXR3. We show that despite the conformational flexibility of the region, a critical W–P bond in the core of the Aux/IAA degron motif occurs at a strikingly high (1:1) ratio of cis to trans isomers, consistent with the requirement of the cis conformer for the formation of the fully-docked receptor complex. We show that the N-terminal half of AXR3 is a mixture of multiple transiently structured conformations with a propensity for two predominant and distinct conformational subpopulations within the overall ensemble. These two states were modeled together with the C-terminal PB1 domain to provide the first complete simulation of an Aux/IAA. Using MD to recreate the assembly of each complex in the presence of auxin, both structural arrangements were shown to engage with the TIR1 receptor, and contact maps from the simulations match closely observations of NMR signal-decreases. Together, our results and approach provide a platform for exploring the functional significance of variation in the Aux/IAA coreceptor family and for understanding the role of intrinsic disorder in auxin signal transduction and other signaling systems

    A question of homology for chordate adhesive organs

    No full text
    The larvae of aquatic vertebrates sometimes possess a transient, mucus-secreting gland on their heads. The most studied of these organs is the Xenopus cement gland. The tadpoles use it to attach to plants or to the water surface, supposedly to hide from predators and save energy before they can swim or feed. Moreover their gland, being innervated by trigeminal fibres, also mediates a locomotor stopping response when the larvae encounter an obstacle. We have described an equivalent organ on the head of the teleost Astyanax mexicanus, that we have called the casquette because of its shape and position on the larval head. The casquette is transient, sticky, secretes mucus, is innervated by the trigeminal ganglion, has an inhibitory function on larval swimming behavior, and expresses Bmp4 and Pitx1/2 during embryogenesis. Here we further discuss the nature of the equivalence between the frog cement gland and the fish casquette, and highlight the usefulness of non-conventional model species to decipher developmental and evolutionary mechanisms of morphological variations
    corecore