270 research outputs found

    Further Tests of Band Placement of Insecticides for Clover Root Borer Control

    Get PDF
    Weaver & Haynes (1955) described a method of placement of insecticides in bands under red clover seed that achieved control of the clover root borer, Hylastinus obscurus (Marsh.). Band placement was as effective at 0.75 pound of toxicant per acre as broadcast treatments at 1 pound or more as reported by Gyrisco et al. (1954) and App & Everly (1950). Since the 1951–53 tests were carried out in one location on small plots and applied by a farm crew experienced in experimental procedures, it was desired to test the band placement method more extensively. Tests in 1954–56 were conducted at seven different locations, using different band seeding equipment operated by farmers as well as technically trained personnel. The results of these trials are reported in this paper

    T2Well/ECO2N Version 1.0: Multiphase and Non-Isothermal Model for Coupled Wellbore-Reservoir Flow of Carbon Dioxide and Variable Salinity Water

    Get PDF
    At its most basic level, the injection of CO{sub 2} into geologic CO{sub 2} storage sites involves a system comprising the wellbore and the target reservoir. The wellbore is the only conduit available to emplace CO{sub 2} into reservoirs for long-term storage. At the same time, wellbores in general have been identified as the most likely conduit for CO{sub 2} and brine leakage from geologic carbon sequestration (GCS) sites, especially those in sedimentary basins with historical hydrocarbon production. We have developed a coupled wellbore and reservoir model for simulating the dynamics of CO{sub 2} injection and leakage through wellbores. The model describes the following processes: (1) upward or downward wellbore flow of CO{sub 2} and variable salinity water with transition from supercritical to gaseous CO{sub 2} including Joule-Thomson cooling, (2) exsolution of CO{sub 2} from the aqueous phase as pressure drops, and (3) cross flow into or interaction with layers of surrounding rock (reservoirs). We use the Drift-Flux Model and related conservation equations for describing transient two-phase non-isothermal wellbore flow of CO{sub 2}-water mixtures under different flow regimes and interacting with surrounding rock. The mass and thermal energy balance equations are solved numerically by a finite difference scheme with wellbore heat transmission to the surrounding rock handled either semi-analytically or numerically. The momentum balance equation for the flow in the wellbore is solved numerically with a semi-explicit scheme. This manual provides instructions for compilation and use of the new model, and presents some example problems to demonstrate its use

    Wellbore flow model for carbon dioxide and brine

    Get PDF
    Wellbores have been identified as the most likely conduit for CO{sub 2} and brine leakage from geologic carbon sequestration (GCS) sites, especially those in sedimentary basins with historical hydrocarbon production. In order to quantify the impacts of leakage of CO{sub 2} and brine through wellbores, we have developed a wellbore simulator capable of describing non-isothermal open well flow dynamics of CO{sub 2}-brine mixtures. The mass and thermal energy balance equations are solved numerically by a finite difference scheme with wellbore heat transmission handled semianalytically. This new wellbore simulator can take as input the pressure, saturation, and composition conditions from reservoir simulators and calculate CO{sub 2} and brine fluxes needed to assess impacts to vulnerable resources. This new capability is being incorporated into the Certification Framework (CF) developed for risk assessment of GCS sites

    A reactive transport model for geochemical mitigation of CO2 leaking into a confined aquifer

    Get PDF
    Long-term storage of anthropogenic CO2 in the subsurface generally assumes that caprock formations will serve as physical barriers to upward migration of CO2. However, as a precaution and to provide assurances to regulators and the public, monitoring is used detect any unexpected leakage from the storage reservoir. If a leak is found, the ability to rapidly deploy mitigation measures is needed. Here we use the TOUGHREACT code to develop a series of two-dimensional reactive transport simulations of the hydrogeochemical characteristics of a newly formed CO2 leak into an overlying aquifer. Using this model, we consider: (1) geochemical shifts in formation water indicative of a leak; (2) hydrodynamics of pumping wells in the vicinity of a leak; and (3) delivery of a sealant to a leak through an adjacent well bore.Our results demonstrate that characteristic shifts in pH and dissolved inorganic carbon can be detected in the aquifer prior to the breakthrough of supercritical CO2, and could offer a potential means of identifying small and newly formed leaks. Pumping water into the aquifer in the vicinity of the leak provides a hydrodynamic control that can temporarily mitigate the flux rate of CO2 and facilitate delivery of a sealant to the location of the caprock defect. Injection of a fluid-phase sealant through the pumping well is demonstrated by introduction of a silica-bearing alkaline flood, resulting in precipitation of amorphous silica in areas of neutral to acidic pH. Results show that a decrease in permeability of several orders of magnitude can be achieved with a high molar volume sealant, such that CO2 flux rate is decreased. However, individual simulation results are highly contingent upon both the properties of the sealant, the porosity-permeability relationship employed in the model, and the relative flux rates of CO2 and alkaline flood introduced into the aquifer. These conclusions highlight the need for both experimental data and controlled field tests to constrain modelling predictions
    • …
    corecore