35 research outputs found

    Special Issue "Recent Developments on Functional Coatings for Industrial Applications"

    Get PDF
    "Recent Developments on Functional Coatings for Industrial Applications" assessed some emerging aspects concerning the recent research progress in the designing, manufacturing and tailoring of new functional coatings for industrial applications. The purpose was to address the recent development in functional coatings synthesis, characterization and optimization, highlighting its emerging industrial applicability in many industrial fields, such as self-healing, self-cleaning or sustainable energy technologies. The multidisciplinary nature of the issue represents an added value aimed at better enhancing the practical relevance and the technological versatility of the functional surface engineering design

    Microstructural Characterization of Mg-Al Spinel Powders

    Get PDF
    Mg-Al spinel powders have been prepared by thermal decomposition of a mixture of: A-aluminium and magnesium nitrates; B-aluminium and magnesium hydroxides; and C-aluminium hydroxide and magnesium oxalate. The initial and the final powders were both characterized by specific surface area measurements, mercury intrusion porosimetry, X-ray diffraction, and scanning electron microscopy. The results showed that the preparation process sharply influences the final microstructure of the spinel powders. In particular while the shape and particle dimensions of the samples prepared by mixture of aluminium and magnesium nitrates are mainly influenced by crushing process, the preparation via mixed magnesium and aluminium hydroxides precipitation permits use of spinel formation temperatures as low as 350°C. Characteristically this powder is very uniform and consists of small particle sizes (0.1 micrometers)

    Superhydrophobic Self-Assembled Silane Monolayers on Hierarchical 6082 Aluminum Alloy for Anti-Corrosion Applications

    Get PDF
    In this work, a two-stage methodology to design super-hydrophobic surfaces was proposed. The first step consists of creating a rough nano/micro-structure and the second step consists of reducing the surface energy using octadecyltrimethoxysilane. The surface roughening was realized by three different short-term pretreatments: (i) Boiling water, (ii) HNO3/HCl etching, or (iii) HF/HCl etching. Then, the surface energy was reduced by dip-coating in diluted solution of octadecyltrimethoxysilane to allow the formation of self-assembled silane monolayers on a 6082-T6 aluminum alloy surface. Super-hydrophobic aluminum surfaces were investigated by SEM-EDS, FTIR, profilometry, and contact and sliding angles measurements. The resulting surface morphologies by the three approaches were structured by a dual hierarchical nano/micro-roughness. The surface wettability varied with the applied roughening pretreatment. In particular, an extremely high water contact angle (around 180°) and low sliding angle (0°) were evidenced for the HF/HCl-etched silanized surface. The results of electrochemical tests demonstrate a remarkable enhancement of the aluminum alloy corrosion resistance through the proposed superhydrophobic surface modifications. Thus, the obtained results evidenced that the anti-wetting behavior of the aluminum surface can be optimized by coupling an appropriate roughening pretreatment with a self-assembled silane monolayer deposition (to reduce surface energy) for anticorrosion application

    Effects of ageing on mechanical durability of round clinched steel/aluminium joints

    Get PDF
    The clinching is one of the most common metal joining processes in the manufacturing of metal plate based products (similar or dissimilar, pre-coated or galvanized), especially when the assembly without adding major joining elements is required. When the clinched joints work in an aggressive environment, particular attention would be placed on the electrochemical stability and corrosion resistance of the metal constituents (Mizukoshi and Okada 1997). In joining design, an appropriate material selection reduces the electrochemical potential differences and prevents significant galvanic currents (Kruger and Mandel 2011; Calabrese et al. 2014). The durability of the metal joints could be heavily influenced in a corrosive environment, whereas the less noble material will tend to increase its corrosion rate; instead the more noble one will reduce its electrochemical dissolution (He et al. 2008; Bardal 2004). Accelerated ageing tests (i.e. salt fog test) were carried out to evaluate the durability of the joints in highly aggressive environments (Calabrese et al. 2013; LeBozec et al. 2012). Although the durability for a long time of the clinched joint in a corrosion environment is a known problem, few works focus the attention on the relationship between durability of joints and electrochemical behaviour of the metal constituents. The aim of the present work is to evaluate the durability at long ageing time in salt spray test (according to ASTM B117) of carbon steel/aluminium alloy joints, obtained by clinching. The investigation has been conducted on one total thickness (2.5 mm) of unsymmetrical joints (i.e. thickness sheets of 1.5 mm and 1 mm) to inquire about the effect of corrosion on the two different unsymmetrical configurations (St1.5/Al1 and St1/Al.5). The joint resistance has been determined, by means of shear tests of single-lap joints in according to ISO/CD 12996. The samples were exposed to critical environmental conditions following the ASTM B 117 standard. To inquire the damage evolution of the samples, 0, 1, 2,3, 5, 7, 10 and 15 weeks of ageing time have been chosen. Seven samples for each combination and for each ageing time were realized. A Design of Experiment has been performed, followed by the ANOVA of the results to analyse the influence of the two factors, thickness combinations and ageing time, on the mechanical properties of the joints. The two sets of joints show a different behaviour at increasing ageing time: the St1.5/Al1 batch shows a constant decay of the load values, instead the St1/Al1.5 set maintains acceptable values of resistance for several weeks of ageing, at tenth week the mechanical stability is strongly impaired. In the latter case the presence of the thin oxide layer at the overlapping interface, which behaves as an adhesive interlayer, and the larger thickness of the aluminium plate improve the resistance of the St1/Al1.5 joints. Statistical analysis confirms that the two thickness combinations and ageing time are the significant factors. At zero weeks, neglecting the effect of ageing, the maximum load values of all samples belong to the same population. This means that the resistance of the clinched joints is the same regardless the combination of thicknesses, but by considering both the ageing and thickness, the analysis of variance shows that both thickness and weeks are significant parameters distinguishing two different populations in the distribution of loads. The experimental results evidenced that the corrosion degradation phenomena influence significantly both the performance and the failure of the joints. This is also confirmed by statistical analysis according to which the two thickness combinations and ageing time are the significant factors

    Morphological and Structural Evaluation of Hydration/Dehydration Stages of MgSO4 Filled Composite Silicone Foam for Thermal Energy Storage Applications

    Get PDF
    Salt hydrates, such as MgSO4·7H2O, are considered attractive materials for thermal energy storage, thanks to their high theoretical storage density. However, pure salt hydrates present some challenges in real application due to agglomeration, corrosion and swelling problems during hydration/dehydration cycles. In order to overcome these limitations, a composite material based on silicone vapor-permeable foam filled with the salt hydrate is here presented. For its characterization, a real-time in situ environmental scanning electron microscopy (ESEM) investigation was carried out in controlled temperature and humidity conditions. The specific set-up was proposed as an innovative method in order to evaluate the morphological evolution of the composite material during the hydrating and dehydrating stages of the salt. The results evidenced an effective micro-thermal stability of the material. Furthermore, dehydration thermogravimetric/differential scanning calorimetric (TG/DSC) analysis confirmed the improved reactivity of the realized composite foam compared to pure MgSO4·7H2O.This work was partially funded by the Ministerio de Ciencia, Innovación y Universidades de España (RTI2018-093849-B-C31). This work was partially supported by ICREA under the ICREA Academia program

    Definition of an Experimental Set-up for Studying the Safety of Hydrogen Transport Systems

    Get PDF
    The required energy transition, unavoidable for the decarbonisation of industrial processes and economic sectors, is increasing the attention in Europe and around the world towards hydrogen. Hydrogen is an energy carrier, globally trusted to meet climate challenges, as it can store and deliver large amounts of energy per unit mass, reducing CO2 emissions. Hydrogen can be used as a feedstock, a fuel or an energy carrier and storage and it has many possible applications in the industrial, transport, energy and construction sectors. These properties make hydrogen essential to support the EU's commitment to achieve carbon neutrality by 2050 and for the global effort to implement the Paris Agreement while working towards zero pollution. For the purpose of facilitate this process, it is necessary to have a network capable of making this resource usable in a capillary, efficient and safe way. Gas pipelines, used to transport natural gas, can be exploited for the transport of pure or mixed hydrogen. It is therefore necessary to understand how hydrogen can affect the integrity and safety of gas pipelines, in order to establish whether the hydrogen/natural gas mixture is a viable and safe solution and within what ratios. Hydrogen embrittlement manifests in a loss of mechanical properties such as decreased ductility and toughness, increasing failure likelihood and gas releases, which are very dangerous, due to hydrogen ability to catch fire very easily and to the explosion hazard. The purpose of this work is the design and demonstration of a test setup for pipeline steel in a high-pressure gaseous hydrogen environment, by means of miniature hollow pipe-like specimen working at high-pressure hydrogen, in a safe and easily accessible manner with the basic laboratory equipment

    MgO·1.5Al2O3 spinel grain growth and microstructure characterization by scanning electron microscopy and digital image analysis

    No full text
    The microstructure of sintered polycrystalline MgO·1.5Al2O3 ceramic is strongly affected by the sintering conditions due to the precipitation of α-alumina at a temperature lower than about 1400°C. Consequently, the mechanical properties, depending on grain size distribution, are greatly influenced. Three different microstructures were obtained by a two step sintering process adopting an intermediate sintering temperature of 1050°C, 1100°C and 1300°C respectively, and a final sintering temperature of 1500°C. Comparable samples obtained directly by firing at 1500°C were used. Digital image analysis (DIA) carried out on scanning electron microscope (SEM) images was performed in order to better describe the microstructural parameters. By DIA, it was possible to simultaneously characterize both grain morphology and pore size distribution, allowing us to obtain a parametrical classification which is of fundamental importance in automatic morphology recognition

    A Review on the Applications of Acoustic Emission Technique in the Study of Stress Corrosion Cracking

    No full text
    The complex nature of the damage evolution in stress corrosion cracking (SCC) leads to explore for new investigation technologies in order to better identify the mechanisms that supervise the initiation and evolution of the damage as well to provide an improvement of knowledge on this critical localized corrosion form during time. Research activities concerning the use of acoustic emission (AE) technique to assess SCC has acquiring considerably relevance in recent decades. The non-invasiveness and the possibility to provide a continuous in situ monitoring of structures and components make this non-destructive technique clearly promising in the field of structural health monitoring. In this concern, this paper aims to be a focused overview on the evaluation of SCC phenomena by AE technique. The main topic of this review is centered on the approaches that can be used in elaborating AE data to better discriminate the mechanisms that contribute to damage propagation in SCC conditions. Based on available literature, investigation approaches assessing AE waveform parameters were classified, evidencing, furthermore, the identified mechanisms that synergistically take place during the material degradation. Eventually, a brief summary and a future trend evaluation was also reported
    corecore