402 research outputs found

    Search for plant biomagnetism with a sensitive atomic magnetometer

    Get PDF
    We report what we believe is the first experimental limit placed on plant biomagnetism. Measurements with a sensitive atomic magnetometer were performed on the Titan arum (Amorphophallus titanum) inflorescence, known for its fast bio-chemical processes while blooming. We find that the surface magnetic field from these processes, projected along the Earth's magnetic field, and measured at the surface of the plant, is less then ~0.6uG.Comment: 5 pages, 5 figures, to be published - modified one sentence in abstract + reformatted fi

    Century-scale records of land-based activities recorded in Mesoamerican coral cores

    Get PDF
    Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Marine Pollution Bulletin 58 (2009): 1835-1842, doi:10.1016/j.marpolbul.2009.07.024.The Mesoamerican Reef, the second-largest barrier reef in the world, is located in the western Caribbean Sea off the coasts of Mexico, Belize, Guatemala, and Honduras. Particularly in the south, the surrounding watersheds are steep and the climate is extremely wet. With development and agricultural expansion, the potential for negative impacts to the reef from land-based runoff becomes high. We constructed annually resolved century-scale records of metal/calcium ratios in coral skeletons collected from four sites experiencing a gradient of land-based runoff. Our proxy data indicate that runoff onto the reef has increased relatively steadily over time at all sites, consistent with land use trends from historical records. Sediment supply to the reef is greater in the south, and these more exposed reefs will probably benefit most immediately from management that targets runoff reduction. However, because runoff at all sites is steadily increasing, even distal sites will benefit from watershed management.This research was supported by funds from the PADI Foundation, B. Katz, two anonymous donors and the Edna Bailey Sussman Foundation to J.C

    Insights into methane dynamics from analysis of authigenic carbonates and chemosynthetic mussels at newly-discovered Atlantic Margin seeps

    Get PDF
    The recent discovery of active methane venting along the US northern and mid-Atlantic margin represents a new source of global methane not previously accounted for in carbon budgets from this region. However, uncertainty remains as to the origin and history of methane seepage along this tectonically inactive passive margin. Here we present the first isotopic analyses of authigenic carbonates and methanotrophic deep-sea mussels, Bathymodiolus sp., and the first direct constraints on the timing of past methane emission, based on samples collected at the upper slope Baltimore Canyon (∼385 m water depth) and deepwater Norfolk (∼1600 m) seep fields within the area of newly-discovered venting. The authigenic carbonates at both sites were dominated by aragonite, with an average image signature of image, a value consistent with microbially driven anaerobic oxidation of methane-rich fluids occurring at or near the sediment–water interface. Authigenic carbonate U and Sr isotope data further support the inference of carbonate precipitation from seawater-derived fluids rather than from formation fluids from deep aquifers. Carbonate stable and radiocarbon (image and image) isotope values from living Bathymodiolus sp. specimens are lighter than those of seawater dissolved inorganic carbon, highlighting the influence of fossil carbon from methane on carbonate precipitation. U–Th dates on authigenic carbonates suggest seepage at Baltimore Canyon between image to image, and at the Norfolk seep field between image to image, providing constraint on the longevity of methane efflux at these sites. The age of the brecciated authigenic carbonates and the occurrence of pockmarks at the Baltimore Canyon upper slope could suggest a link between sediment delivery during Pleistocene sea-level lowstand, accumulation of pore fluid overpressure from sediment compaction, and release of overpressure through subsequent venting. Calculations show that the Baltimore Canyon site probably has not been within the gas hydrate stability zone (GHSZ) in the past 20 ka, meaning that in-situ release of methane from dissociating gas hydrate cannot be sustaining the seep. We cannot rule out updip migration of methane from dissociation of gas hydrate that occurs farther down the slope as a source of the venting at Baltimore Canyon, but consider that the history of rapid sediment accumulation and overpressure may play a more important role in methane emissions at this site

    Helicopter tail rotor thrust and main rotor wake coupling in crosswind flight

    Get PDF
    The tail rotor of a helicopter with a single main rotor configuration can experience a significant reduction in thrust when the aircraft operates in crosswind flight. Brown’s vorticity transport model has been used to simulate a main rotor and tail rotor system translating at a sideslip angle that causes the tail rotor to interact with the main rotor tip vortices as they propagate downstream at the lateral extremities of the wake. The tail rotor is shown to exhibit a distinct directionally dependent mode during which tail rotors that are configured so that the blades travel forward at the top of the disk develop less thrust than tail rotors with the reverse sense of rotation. The range of flight speeds over which this mode exists is shown to vary considerably with the vertical location of the tail rotor. At low flight speeds, the directionally dependent mode occurs because the tail rotor is immersed within not only the downwash from the main rotor but also the rotational flow associated with clusters of largely disorganized vorticity within the main rotor wake. At higher flight speeds, however, the tail rotor is immersed within a coherent supervortex that strongly influences the velocity field surrounding the tail rotor

    Environmental assessment of metal exposure to corals living in Castle Harbour, Bermuda

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Marine Chemistry 154 (2013): 55–66, doi:10.1016/j.marchem.2013.05.002.Environmental contamination in Castle Harbour, Bermuda, has been linked to the dissolution and leaching of contaminants from the adjacent marine landfill. This study expands the evidence for environmental impact of leachate from the landfill by quantitatively demonstrating elevated metal uptake over the last 30 years in corals growing in Castle Harbour. Coral Pb/Ca, Zn/Ca and Mn/Ca ratios and total Hg concentrations are elevated relative to an adjacent control site in John Smith's Bay. The temporal variability in the Castle Harbour coral records suggests that while the landfill has increased in size over the last 35 years, the dominant input of metals is through periodic leaching of contaminants from the municipal landfill and surrounding sediment. Elevated contaminants in the surrounding sediment suggest that resuspension is an important transport medium for transferring heavy metals to corals. Increased winds, particularly during the 1990s, were accompanied by higher coral metal composition at Castle Harbour. Coupled with wind-induced resuspension, interannual changes in sea level within the Harbour can lead to increased bioavailability of sediment-bound metals and subsequent coral metal assimilation. At John Smith's Bay, large scale convective mixing may be driving interannual metal variability in the coral record rather than impacts from land-based activities. Results from this study provide important insights into the coupling of natural variability and anthropogenic input of contaminants to the nearshore environment.This work was supported by a grant from a postdoctoral scholarship to N.G. Prouty from the Woods Hole Oceanographic Institution and grants from the NSF (OCE-0402728; K. Hughen) and the Cove Point Foundation (C. Lamborg)

    Vulnerability of coral reefs to bioerosion from land-based sources of pollution

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Journal of Geophysical Research: Oceans 122 (2017): 9319–9331, doi:10.1002/2017JC013264.Ocean acidification (OA), the gradual decline in ocean pH and [ inline image] caused by rising levels of atmospheric CO2, poses a significant threat to coral reef ecosystems, depressing rates of calcium carbonate (CaCO3) production, and enhancing rates of bioerosion and dissolution. As ocean pH and [ inline image] decline globally, there is increasing emphasis on managing local stressors that can exacerbate the vulnerability of coral reefs to the effects of OA. We show that sustained, nutrient rich, lower pH submarine groundwater discharging onto nearshore coral reefs off west Maui lowers the pH of seawater and exposes corals to nitrate concentrations 50 times higher than ambient. Rates of coral calcification are substantially decreased, and rates of bioerosion are orders of magnitude higher than those observed in coral cores collected in the Pacific under equivalent low pH conditions but living in oligotrophic waters. Heavier coral nitrogen isotope (δ15N) values pinpoint not only site-specific eutrophication, but also a sewage nitrogen source enriched in 15N. Our results show that eutrophication of reef seawater by land-based sources of pollution can magnify the effects of OA through nutrient driven-bioerosion. These conditions could contribute to the collapse of coastal coral reef ecosystems sooner than current projections predict based only on ocean acidification.USGS Coastal and Marine Geology Progra

    Corrigendum to “Insights into methane dynamics from analysis of authigenic carbonates and chemosynthetic mussels at newly-discovered Atlantic Margin seeps” [Earth Planet. Sci. Lett. 449 (2016) 332–344]

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Earth and Planetary Science Letters 475 (2017): 268, doi:10.1016/j.epsl.2017.07.037

    Adaptation and Preadaptation of Salmonella enterica to Bile

    Get PDF
    Bile possesses antibacterial activity because bile salts disrupt membranes, denature proteins, and damage DNA. This study describes mechanisms employed by the bacterium Salmonella enterica to survive bile. Sublethal concentrations of the bile salt sodium deoxycholate (DOC) adapt Salmonella to survive lethal concentrations of bile. Adaptation seems to be associated to multiple changes in gene expression, which include upregulation of the RpoS-dependent general stress response and other stress responses. The crucial role of the general stress response in adaptation to bile is supported by the observation that RpoS− mutants are bile-sensitive. While adaptation to bile involves a response by the bacterial population, individual cells can become bile-resistant without adaptation: plating of a non-adapted S. enterica culture on medium containing a lethal concentration of bile yields bile-resistant colonies at frequencies between 10−6 and 10−7 per cell and generation. Fluctuation analysis indicates that such colonies derive from bile-resistant cells present in the previous culture. A fraction of such isolates are stable, indicating that bile resistance can be acquired by mutation. Full genome sequencing of bile-resistant mutants shows that alteration of the lipopolysaccharide transport machinery is a frequent cause of mutational bile resistance. However, selection on lethal concentrations of bile also provides bile-resistant isolates that are not mutants. We propose that such isolates derive from rare cells whose physiological state permitted survival upon encountering bile. This view is supported by single cell analysis of gene expression using a microscope fluidic system: batch cultures of Salmonella contain cells that activate stress response genes in the absence of DOC. This phenomenon underscores the existence of phenotypic heterogeneity in clonal populations of bacteria and may illustrate the adaptive value of gene expression fluctuations

    A genome-wide association study suggests that a locus within the ataxin 2 binding protein 1 gene is associated with hand osteoarthritis: the Treat-OA consortium

    Get PDF
    To identify the susceptibility gene in hand osteoarthritis (OA) the authors used a two-stage approach genome-wide association study using two discovery samples (the TwinsUK cohort and the Rotterdam discovery subset; a total of 1804 subjects) and four replication samples (the Chingford Study, the Chuvasha Skeletal Aging Study, the Rotterdam replication subset and the Genetics, Arthrosis, and Progression (GARP) Study; a total of 3266 people). Five single-nucleotide polymorphisms (SNPs) had a likelihood of association with hand OA in the discovery stage and one of them (rs716508), was successfully confirmed in the replication stage (meta-analysis p = 1.81×10−5). The C allele conferred a reduced risk of 33% to 41% using a case–control definition. The SNP is located in intron 1 of the A2BP1 gene. This study also found that the same allele of the SNP significantly reduced bone density at both the hip and spine (p<0.01), suggesting the potential mechanism of the gene in hand OA might be via effects on subchondral bone. The authors' findings provide a potential new insight into genetic mechanisms in the development of hand OA

    POMK regulates dystroglycan function via LARGE-mediated elongation of matriglycan

    Get PDF
    Matriglycan [-GlcA-β1,3-Xyl-α1,3-]n serves as a scaffold in many tissues for extracellular matrix proteins containing laminin-G domains including laminin, agrin, and perlecan. Like-acetylglucosaminyltransferase-1 (LARGE1) synthesizes and extends matriglycan on α-dystroglycan (α-DG) during skeletal muscle differentiation and regeneration; however, the mechanisms which regulate matriglycan elongation are unknown. Here, we show that Protein O-Mannose Kinase (POMK), which phosphorylates mannose of core M3 (GalNac-β1,3-GlcNac-β1,4-Man) preceding matriglycan synthesis, is required for LARGE1-mediated generation of full-length matriglycan on α-DG (~150 kDa). In the absence of Pomk in mouse skeletal muscle, LARGE1 synthesizes a very short matriglycan resulting in a ~90 kDa α-DG which binds laminin but cannot prevent eccentric contraction-induced force loss or muscle pathology. Solution NMR spectroscopy studies demonstrate that LARGE1 directly interacts with core M3 and binds preferentially to the phosphorylated form. Collectively, our study demonstrates that phosphorylation of core M3 by POMK enables LARGE1 to elongate matriglycan on α-DG, thereby preventing muscular dystrophy
    corecore