15 research outputs found

    The health outcomes and physical activity in preschoolers (HOPP) study: rationale and design

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The early years are the period of growth for which we know the least about the impact of physical activity. In contrast, we know that more than 90 % of school-aged Canadian children, for example, are not meeting physical activity recommendations. Such an activity crisis is a major contributor to recent trends in childhood obesity, to which preschoolers are not immune. The World Health Organization estimated that more than 42 million children under the age of 5 years were overweight world-wide in 2010. If an activity crisis exists during the preschool years, we should also be concerned about its broader impact on health. Unfortunately, the relationship between physical activity and health during the early years is poorly understood. The goal of the Health Outcomes and Physical activity in Preschoolers (HOPP) study is to describe how the prevalence and patterns of physical activity in preschoolers are associated with indices of health.</p> <p>Methods</p> <p>The HOPP study is a prospective cohort study. We aim to recruit 400 3- to 5-year-old children (equal number of boys and girls) and test them once per year for 3 years. Each annual assessment involves 2 laboratory visits and 7 consecutive days of physical activity monitoring with protocols developed in our pilot work. At visit 1, we assess body composition, aerobic fitness, short-term muscle power, motor skills, and have the parents complete a series of questionnaires related to their child’s physical activity, health-related quality of life and general behaviour. Over 7 consecutive days each child wears an accelerometer on his/her waist to objectively monitor physical activity. The accelerometer is programmed to record movement every 3 s, which is needed to accurately capture the intensity of physical activity. At visit 2, we assess vascular structure and function using ultrasound. To assess the associations between physical activity and health outcomes, our primary analysis will involve mixed-effects models for longitudinal analyses.</p> <p>Discussion</p> <p>The HOPP study addresses a significant gap in health research and our findings will hold the potential to shape public health policy for active living during the early years.</p

    Decreased mitochondrial respiration in aneurysmal aortas of Fibulin-4 mutant mice is linked to PGC1A regulation

    Get PDF
    Aim Thoracic aortic aneurysms are a life-threatening condition often diagnosed too late. To discover novel robust biomarkers, we aimed to better understand the molecular mechanisms underlying aneurysm formation. Methods and results In Fibulin-4R/R mice, the extracellular matrix protein Fibulin-4 is 4-fold reduced, resulting in progressive ascending aneurysm formation and early death around 3 months of age. We performed proteomics and genomics studies on Fibulin-4R/R mouse aortas. Intriguingly, we observed alterations in mitochondrial protein composition in Fibulin-4R/R aortas. Consistently, functional studies in Fibulin-4R/R vascular smooth muscle cells (VSMCs) revealed lower oxygen consumption rates, but increased acidification rates. Yet, mitochondria in Fibulin-4R/R VSMCs showed no aberrant cytoplasmic localization. We found similar reduced mitochondrial respiration in Tgfbr-1M318R/+ VSMCs, a mouse model for Loeys-Dietz syndrome (LDS). Interestingly, also human fibroblasts from Marfan (FBN1) and LDS (TGFBR2 and SMAD3) patients showed lower oxygen consumption. While individual mitochondrial Complexes I–V activities were unaltered in Fibulin-4R/R heart and muscle, these tissues showed similar decreased oxygen consumption. Furthermore, aortas of aneurysmal Fibulin-4R/R mice displayed increased reactive oxygen species (ROS) levels. Consistent with these findings, gene expression analyses revealed dysregulation of metabolic pathways. Accordingly, blood ketone levels of Fibulin-4R/R mice were reduced and liver fatty acids were decreased, while liver glycogen was increased, indicating dysregulated metabolism at the organismal level. As predicted by gene expression analysis, the activity of PGC1α, a key regulator between mitochondrial function and organismal metabolism, was downregulated in Fibulin-4R/R VSMCs. Increased TGFβ reduced PGC1α levels, indicating involvement of TGFβ signalling in PGC1α regulation. Activation of PGC1α restored the decreased oxygen consumption in Fibulin-4R/R VSMCs and improved their reduced growth potential, emphasizing the importance of this key regulator. Conclusion Our data indicate altered mitochondrial function and metabolic dysregulation, leading to increased ROS levels and altered energy production, as a novel mechanism, which may contribute to thoracic aortic aneurysm formation

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Validity of field assessments to predict peak muscle power in preschoolers

    No full text
    Field-based fitness assessments are time- and cost-efficient. However, no studies to date have reported the predictive value of field-based musculoskeletal fitness assessments in preschoolers. The purpose of this study was to determine the validity of 2 field assessments to predict peak muscle power in preschool-aged children. Four-hundred and nineteen 3- to 5-year olds participated (208 girls, 211 boys; mean age: 4.5 ± 0.9 years). Peak power (PP) was evaluated using a modified 10-s Wingate protocol as the criterion standard. Standing long-jump was measured in inches to the back of the heel using a 2-footed takeoff and landing. Shuttle-run time was measured using a shuttle-run protocol, which required children to sprint 50 feet (15.2 m), pick up a small block, and sprint back, with time measured to the closest tenth of a second. Regression modelling was used to calculate the predictive power of each field-based measurement, adjusting for weight (kg), age, and sex. Both standing long-jump distance and shuttle-run time were significantly correlated with PP (r = 0.636, p < 0.001, and r = -0.684, p < 0.001, respectively). Linear regression analysis determined that a child’s PP can be predicted from the child’s weight, age, and sex and either standing long-jump or shuttle-run time (adjusted R = 0.79, p < 0.001, and 0.81, p < 0.001, respectively). The standing long-jump and the Bruininks Oseretsky Test of Motor Proficiency 2nd Edition shuttle-run are both significant predictors of peak muscle power in preschool children. Either measure can be used as a cost- and time-efficient estimate of musculoskeletal fitness in preschoolers

    Motor competence, physical activity, and fitness across early childhood

    No full text
    OBJECTIVES: To examine if the associations between motor competence and physical activity and musculoskeletal fitness change over time, whether motor competence is associated with longitudinal trajectories of physical activity and fitness, and mediating pathways among these constructs across early childhood. METHODS: Four hundred and eighteen children 3 to 5 yr of age (210 boys; age, 4.5 ± 1.0 yr) were recruited and completed three annual assessments as part of the Health Outcomes and Physical activity in Preschoolers study. Motor competence was assessed using the Bruininks-Oseretsky Test of Motor Proficiency Second Edition-Short Form. Musculoskeletal fitness (short-term muscle power) was evaluated using a modified 10-s Wingate protocol on a cycle ergometer. Physical activity was measured over 7 d using accelerometers. RESULTS: At baseline, the cross-sectional relationship between motor competence and vigorous physical activity was not significant; however, a significant, weak positive association emerged across time. Results from longitudinal mixed-effect models found motor competence to be a significant positive predictor of musculoskeletal fitness and vigorous physical activity and to be associated with steeper increases in physical activity across time. Motor competence was independently associated with musculoskeletal fitness and physical activity during this early childhood period. CONCLUSIONS: Motor competence is an important independent predictor of physical activity and musculoskeletal fitness levels across early childhood. Motor competence may be an important target for early interventions to improve both physical activity and fitness in the early years

    Step count targets corresponding to new physical activity guidelines for the early years

    No full text
    Step Count Targets Corresponding to New Physical Activity Guidelines for the Early Years. Med. Sci. Sports Exerc., Vol. 45, No. 2, pp. 314-318, 2013. Purpose: New physical activity guidelines recommend that children age 3-4 yr should accumulate at least 180 min of physical activity at any intensity spread throughout the day, including progression toward at least 60 min of energetic play by 5 yr of age. Step count targets corresponding to these recommendations will help practitioners and researchers monitor physical activity. Methods: One hundred thirty-three preschoolers were instructed to wear accelerometers for seven consecutive days. Activity and step count data were recorded in 3-s epochs. Step count targets equivalent to physical activity recommendations were derived using prediction equations from regression analyses. Receiver operating curve analyses were conducted to compare the sensitivity and specificity of the derived thresholds as well as a range of other targets. Results: The daily step count target derived for 180 min of physical activity of any intensity was 6013 T 88, whereas the target for 180 min of physical activity of any intensity including at least 60 min of moderate-to-vigorous physical activity was 6191 T 103. The smallest discrepancy between days meeting physical activity guidelines and step count targets was found with a 6000-step-per-day target. Receiver operating curves confirmed a balanced sensitivity and specificity of this target. Conclusions: On the basis of our data, we suggest that a new step count target of 6000 steps per day should be used to determine whether 3-to 5-yr-old children are meeting physical activity recommendations

    Comparison of Optic Disc Ovality Index and Rotation Angle Measurements in Myopic Eyes Using Photography and OCT Based Techniques.

    No full text
    PurposeTo compare optic nerve head (ONH) ovality index and rotation angle measurements based on semi-automated delineation of the clinical ONH margin derived from photographs and automated BMO configuration derived from optical coherence tomography (OCT) images in healthy and glaucomatous eyes with high-, mild- and no axial myopia.MethodsOne hundred seventy-five healthy and glaucomatous eyes of 146 study participants enrolled in the Diagnostic Innovations in Glaucoma Study (DIGS) with optic disc photographs and Spectralis OCT ONH scans acquired on the same day were stratified by level of axial myopia (non-myopic [n = 56, axial length (AL) &lt;24 mm], mild-myopic [n = 58, AL 24-26 mm] and high-myopic [n = 32, AL &gt;26 mm]. The clinical disc margin of each photograph was manually annotated, and semi-automated measurements were recorded of the ovality index and rotation angle based on a best-fit ellipse generated using ImageJ software. These semi-automated photograph-based measurements were compared to ovality index and rotation angle generated from custom automated BMO-based analysis using segmented OCT ONH volumes. R 2 values from linear mixed effects models were used to describe the associations between semi-automated, photograph-based and automated OCT-based measurements.ResultsAverage (95% CI) axial length was 23.3 (23.0, 23.3) mm, 24.8 (24.7, 25.0) mm and 26.8 (26.6, 27.0) mm in non-myopic, mild-myopic and high-myopic eyes, respectively (ANOVA, p ≤ 0.001 for all). The R 2 association (95% CI) between semi-automated photograph-based and automated OCT-based assessment of ONH OI for all eyes was [0.26 (0.16, 0.36); p &lt; 0.001]. This association was weakest in non-myopic eyes [0.09 (0.01, 0.26); p = 0.02], followed by mild-myopic eyes [0.13 (0.02, 0.29); p = 0.004] and strongest in high-myopic eyes [0.40 (0.19, 0.60); p &lt; 0.001]. No significant associations were found between photography- and OCT-based assessment of rotation angle with R 2 values ranging from 0.00 (0.00, 0.08) in non-myopic eyes to 0.03 (0.00, 0.21) in high-myopic eyes (all associations p ≥ 0.33).ConclusionsAgreement between photograph-based and automated OCT-based ONH morphology measurements is limited, suggesting that these methods cannot be used interchangeably for characterizing myopic changes in the ONH

    Detecting Glaucoma from Fundus Photographs Using Deep Learning without Convolutions: Transformer for Improved Generalization.

    No full text
    PurposeTo compare the diagnostic accuracy and explainability of a Vision Transformer deep learning technique, Data-efficient image Transformer (DeiT), and ResNet-50, trained on fundus photographs from the Ocular Hypertension Treatment Study (OHTS) to detect primary open-angle glaucoma (POAG) and identify the salient areas of the photographs most important for each model's decision-making process.DesignEvaluation of a diagnostic technology.Subjects participants and controlsOverall 66 715 photographs from 1636 OHTS participants and an additional 5 external datasets of 16 137 photographs of healthy and glaucoma eyes.MethodsData-efficient image Transformer models were trained to detect 5 ground-truth OHTS POAG classifications: OHTS end point committee POAG determinations because of disc changes (model 1), visual field (VF) changes (model 2), or either disc or VF changes (model 3) and Reading Center determinations based on disc (model 4) and VFs (model 5). The best-performing DeiT models were compared with ResNet-50 models on OHTS and 5 external datasets.Main outcome measuresDiagnostic performance was compared using areas under the receiver operating characteristic curve (AUROC) and sensitivities at fixed specificities. The explainability of the DeiT and ResNet-50 models was compared by evaluating the attention maps derived directly from DeiT to 3 gradient-weighted class activation map strategies.ResultsCompared with our best-performing ResNet-50 models, the DeiT models demonstrated similar performance on the OHTS test sets for all 5 ground-truth POAG labels; AUROC ranged from 0.82 (model 5) to 0.91 (model 1). Data-efficient&nbsp;image Transformer AUROC was consistently higher than ResNet-50 on the 5 external datasets. For example, AUROC for the main OHTS end point (model 3) was between 0.08 and 0.20 higher in the DeiT than ResNet-50 models. The saliency maps from the DeiT highlight localized areas of the neuroretinal rim, suggesting important rim features for classification. The same maps in the ResNet-50 models show a more diffuse, generalized distribution around the optic disc.ConclusionsVision Transformers have the potential to improve generalizability and explainability in deep learning models, detecting eye disease and possibly other medical conditions that rely on imaging for clinical diagnosis and management

    Sedentary Time and Screen-Based Sedentary Behaviors of Children With a Chronic Disease

    No full text
    The objectives of this study were to (i) assess sedentary time and prevalence of screen-based sedentary behaviors of children with a chronic disease and (ii) compare sedentary time and prevalence of screen-based sedentary behaviors to age- and sex-matched healthy controls. Sixty-five children (aged 6-18 years) with a chronic disease participated: survivors of a brain tumor, hemophilia, type 1 diabetes mellitus, juvenile idiopathic arthritis, cystic fibrosis, and Crohn's disease. Twenty-nine of these participants were compared with age- and sex-matched healthy controls. Sedentary time was measured objectively by an ActiGraph GT1M or GT3x accelerometer worn for 7 consecutive days and defined as less than 100 counts per min. A questionnaire was used to assess screen-based sedentary behaviors. Children with a chronic disease engaged in an average of 10.2 +/- 1.4 hr of sedentary time per day, which comprised 76.5 +/- 7.1% of average daily monitoring time. There were no differences between children with a chronic disease and controls in sedentary time (adjusted for wear time, p = .06) or in the prevalence of TV watching, and computer or video game usage for varying durations (p = .78, p = .39 and, p = .32 respectively). Children with a chronic disease, though relatively healthy, accumulate high levels of sedentary time, similar to those of their healthy peer

    A novel CXCL10-based GPI-anchored fusion protein as adjuvant in NK-based tumor therapy

    Get PDF
    BACKGROUND: Cellular therapy is a promising therapeutic strategy for malignant diseases. The efficacy of this therapy can be limited by poor infiltration of the tumor by immune effector cells. In particular, NK cell infiltration is often reduced relative to T cells. A novel class of fusion proteins was designed to enhance the recruitment of specific leukocyte subsets based on their expression of a given chemokine receptor. The proteins are composed of an N-terminal chemokine head, the mucin domain taken from the membrane-anchored chemokine CX3CL1, and a C-terminal glycosylphosphatidylinositol (GPI) membrane anchor replacing the normal transmembrane domain allowing integration of the proteins into cell membranes when injected into a solid tumor. The mucin domain in conjunction with the chemokine head acts to specifically recruit leukocytes expressing the corresponding chemokine receptor. METHODOLOGY/PRINCIPAL FINDINGS: A fusion protein comprising a CXCL10 chemokine head (CXCL10-mucin-GPI) was used for proof of concept for this approach and expressed constitutively in Chinese Hamster Ovary cells. FPLC was used to purify proteins. The recombinant proteins efficiently integrated into cell membranes in a process dependent upon the GPI anchor and were able to activate the CXCR3 receptor on lymphocytes. Endothelial cells incubated with CXCL10-mucin-GPI efficiently recruited NK cells in vitro under conditions of physiologic flow, which was shown to be dependent on the presence of the mucin domain. Experiments conducted in vivo using established tumors in mice suggested a positive effect of CXCL10-mucin-GPI on the recruitment of NK cells. CONCLUSIONS: The results suggest enhanced recruitment of NK cells by CXCL10-mucin-GPI. This class of fusion proteins represents a novel adjuvant in cellular immunotherapy. The underlying concept of a chemokine head fused to the mucin domain and a GPI anchor signal sequence may be expanded into a broader family of reagents that will allow targeted recruitment of cells in various settings
    corecore