538 research outputs found
Quantum Noise Limits for Nonlinear, Phase-Invariant Amplifiers
Any quantum device that amplifies coherent states of a field while preserving
their phase generates noise. A nonlinear, phase-invariant amplifier may
generate less noise, over a range of input field strengths, than any linear
amplifier with the same amplification. We present explicit examples of such
nonlinear amplifiers, and derive lower bounds on the noise generated by a
nonlinear, phase-invariant quantum amplifier.Comment: RevTeX, 6 pages + 4 figures (included in file; hard copy sent on
request
Conditional quantum logic using two atomic qubits
In this paper we propose and analyze a feasible scheme where the detection of
a single scattered photon from two trapped atoms or ions performs a conditional
unitary operation on two qubits. As examples we consider the preparation of all
four Bell states, the reverse operation that is a Bell measurement, and a CNOT
gate. We study the effect of atomic motion and multiple scattering, by
evaluating Bell inequalities violations, and by calculating the CNOT gate
fidelity.Comment: 23 pages, 8 figures in 11 file
Optimizing the fast Rydberg quantum gate
The fast phase gate scheme, in which the qubits are atoms confined in sites
of an optical lattice, and gate operations are mediated by excitation of
Rydberg states, was proposed by Jaksch et al. Phys. Rev. Lett. 85, 2208 (2000).
A potential source of decoherence in this system derives from motional heating,
which occurs if the ground and Rydberg states of the atom move in different
optical lattice potentials. We propose to minimize this effect by choosing the
lattice photon frequency \omega so that the ground and Rydberg states have the
same frequency-dependent polarizability \alpha(omega). The results are
presented for the case of Rb.Comment: 5 pages, submitted to PR
Comparison of Theory and Experiment for a One-Atom Laser in a Regime of Strong Coupling
Our recent paper reports the experimental realization of a one-atom laser in
a regime of strong coupling (Ref. [1]). Here we provide the supporting
theoretical analysis relevant to the operating regime of our experiment. By way
of a simplified four-state model, we investigate the passage from the domain of
conventional laser theory into the regime of strong coupling for a single
intracavity atom pumped by coherent external fields. The four-state model is
also employed to exhibit the vacuum-Rabi splitting and to calculate the optical
spectrum. We next extend this model to incorporate the relevant Zeeman
hyperfine states as well as a simple description of the pumping processes in
the presence of polarization gradients and atomic motion. This extended model
is employed to make quantitative comparisons with the measurements of Ref. [1]
for the intracavity photon number versus pump strength and for the photon
statistics as expressed by the intensity correlation function g2(tau).Comment: 19 pages, 14 figures. Added sections on: scaling properties,
vacum-Rabi splitting, and optical spectru
Photon polarisation entanglement from distant dipole sources
It is commonly believed that photon polarisation entanglement can only be
obtained via pair creation within the same source or via postselective
measurements on photons that overlapped within their coherence time inside a
linear optics setup. In contrast to this, we show here that polarisation
entanglement can also be produced by distant single photon sources in free
space and without the photons ever having to meet, if the detection of a photon
does not reveal its origin -- the which way information. In the case of two
sources, the entanglement arises under the condition of two emissions in
certain spatial directions and leaves the dipoles in a maximally entangled
state.Comment: 7 pages, 2 figures, revised version, accepted for publication in J.
Phys.
Quantum computing in optical microtraps based on the motional states of neutral atoms
We investigate quantum computation with neutral atoms in optical microtraps
where the qubit is implemented in the motional states of the atoms, i.e., in
the two lowest vibrational states of each trap. The quantum gate operation is
performed by adiabatically approaching two traps and allowing tunneling and
cold collisions to take place. We demonstrate the capability of this scheme to
realize a square-root of swap gate, and address the problem of double
occupation and excitation to other unwanted states. We expand the two-particle
wavefunction in an orthonormal basis and analyze quantum correlations
throughout the whole gate process. Fidelity of the gate operation is evaluated
as a function of the degree of adiabaticity in moving the traps. Simulations
are based on rubidium atoms in state-of-the-art optical microtraps with quantum
gate realizations in the few tens of milliseconds duration range.Comment: 11 pages, 7 figures, for animations of the gate operation, see
http://www.itp.uni-hannover.de/~eckert/na/index.htm
Zeros of Rydberg-Rydberg Foster Interactions
Rydberg states of atoms are of great current interest for quantum
manipulation of mesoscopic samples of atoms. Long-range Rydberg-Rydberg
interactions can inhibit multiple excitations of atoms under the appropriate
conditions. These interactions are strongest when resonant collisional
processes give rise to long-range C_3/R^3 interactions. We show in this paper
that even under resonant conditions C_3 often vanishes so that care is required
to realize full dipole blockade in micron-sized atom samples.Comment: 10 pages, 4 figures, submitted to J. Phys.
- …
