402 research outputs found

    Magnetic impurity resonance states and symmetry of the superconducting order parameter in iron-based superconductors

    Full text link
    We investigate the effect of magnetic impurities on the local quasiparticle density of states (LDOS) in iron-based superconductors. Employing the two-orbital model where 3dd electron and hole conduction bands are hybridizing with the localized ff-orbital of the impurity spin, we investigate how various symmetries of the superconducting gap and its nodal structure influence the quasiparticle excitations and impurity bound states. We show that the bound states behave qualitatively different for each symmetry. Most importantly we find that the impurity-induced bound states can be used to identify the nodal structure of the extended s-wave symmetry (S±S^{\pm}) that is actively discussed in ferropnictides.Comment: 7 pages, 5 figures, theory part is extended, figures are replace

    Crystallographic disorder and electron scattering on structural two-level systems in ZrAs1.4Se0.5

    Full text link
    Single crystals of ZrAs1.4Se0.5 (PbFCl type structure) were grown by chemical vapour transport. While their thermodynamic and transport properties are typical for ordinary metals, the electrical resistivity exhibits a shallow minimum at low temperatures. Application of strong magnetic fields does not influence this anomaly. The minimum of the resistivity in ZrAs1.4Se0.5 apparently originates from interaction between the conduction electrons and structural two-level systems. Significant disorder in the As-Se substructure is inferred from X-ray diffraction and electron microprobe studies

    The Missing Link in the Monogermanide Series: YbGe

    Get PDF
    High-pressure, high-temperature synthesis at 12 GPa between 750 and 1000 °C for 30 to 300 min yields the last missing rare-earth metal monogermanide, YbGe. Powder and single-crystal X-ray diffraction measurements reveal that the compound crystallizes in a FeB-type structure (space group Pnma, a=7.901(2) Å, b=3.8981(9) Å, and c=5.873(2) Å). The results of the chemical bonding study, while supporting the presence of polyanionic Ge chains interacting with the surrounding Yb through multi-atomic polar bonds, suggest a transitional scenario between the monogermanides formed by alkaline-earth elements and those formed by trivalent rare-earth metals

    Synthesis of Alkaline Earth Diazenides MAEN2 (MAE = Ca, Sr, Ba) by Controlled Thermal Decomposition of Azides under High Pressure

    Get PDF
    The alkaline earth diazenides MAEN2 with MAE = Ca, Sr and Ba were synthesized by a novel synthetic approach, namely, a controlled decomposition of the corresponding azides in a multianvil press at highpressure/ high-temperature conditions. The crystal structure of hitherto unknown calcium diazenide (space group I4/mmm (no. 139), a = 3.5747(6) Å, c = 5.9844(9) Å, Z = 2, wRp = 0.078) was solved and refined on the basis of powder X-ray diffraction data as well as that of SrN2 and BaN2. Accordingly, CaN2 is isotypic with SrN2 (space group I4/mmm (no. 139), a = 3.8054(2) Å, c = 6.8961(4) Å, Z = 2, wRp = 0.057) and the corresponding alkaline earth acetylenides (MAEC2) crystallizing in a tetragonally distorted NaCl structure type. In accordance with literature data, BaN2 adopts a more distorted structure in space group C2/c (no. 15) with a = 7.1608(4) Å, b = 4.3776(3) Å, c = 7.2188(4) Å, β = 104.9679(33)°, Z = 4 and wRp = 0.049). The N−N bond lengths of 1.202(4) Å in CaN2 (SrN2 1.239(4) Å, BaN2 1.23(2) Å) correspond well with a double-bonded dinitrogen unit confirming a diazenide ion [N2]2−. Temperature-dependent in situ powder X-ray diffractometry of the three alkaline earth diazenides resulted in formation of the corresponding subnitrides MAE2N (MAE = Ca, Sr, Ba) at higher temperatures. FTIR spectroscopy revealed a band at about 1380 cm−1 assigned to the N−N stretching vibration of the diazenide unit. Electronic structure calculations support the metallic character of alkaline earth diazenides

    The crystal growth and properties of novel magnetic double molybdate RbFe5_{5}(MoO4_{4})7_{7} with mixed Fe3+^{3+}/Fe2+^{2+}states and 1D negative thermal expansion

    Get PDF
    Single crystals of new compound RbFe5_5(MoO4_4)7_7 were successfully grown by the flux method, and their crystal structure was determined using the X-ray single-crystal diffraction technique. The XRD analysis showed that the compound crystallizes in the monoclinic space group P21/m, with unit cell parameters a = 6.8987(4), b = 21.2912(12) and c = 8.6833(5) Å, β = 102.1896(18)°, V = 1246.66(12) Å3^3, Z (molecule number in the unit cell) = 2, R-factor (reliability factor) = 0.0166, and T = 293(2) K. Raman spectra were collected on the single crystal to show the local symmetry of MoO4_4 tetrahedra, after the confirmation of crystal composition using energy dispersive X-ray spectroscopy (EDS). The polycrystalline samples were synthesized by a solid-state reaction in the Ar atmosphere; the particle size and thermal stability were investigated by scanning electron microscopy (SEM) and differential scanning calorimetry (DSC) analyses. The compound decomposes above 1073 K in an Ar atmosphere with the formation of Fe(III) molybdate. The thermal expansion coefficient along the c direction has the value α = −1.3 ppm K1^{−1} over the temperature range of 298–473 K. Magnetic measurements revealed two maxima in the magnetization below 20 K, and paramagnetic behavior above 50 K with the calculated paramagnetic moment of 12.7 μB per formula unit is in good agreement with the presence of 3_3Fe3+^{3+} and 2_2Fe3+^{3+} in the high-spin (HS) state. The electronic structure of RbFe5(MoO4)7 is comparatively evaluated using X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) calculations
    corecore