572 research outputs found

    Bound state approach to the QCD coupling at low energy scales

    Full text link
    We exploit theoretical results on the meson spectrum within the framework of a Bethe-Salpeter (BS) formalism adjusted for QCD, in order to extract an ``experimental'' coupling \alpha_s^{exp}(Q^2) below 1 GeV by comparison with the data. Our results for \alpha_s^{exp}(Q^2) exhibit a good agreement with the infrared safe Analytic Perturbation Theory (APT) coupling from 1 GeV down to 200 MeV. As a main result, we claim that the combined BS-APT theoretical scheme provides us with a rather satisfactory correlated understanding of very high and low energy phenomena.Comment: Revised version, to appear on Physical Review Letters. 7 pages, 2 figures, Revte

    QCD coupling below 1 GeV from quarkonium spectrum

    Full text link
    In this paper we extend the work synthetically presented in Ref.[1] and give theoretical details and complete tables of numerical results. We exploit calculations within a Bethe-Salpeter (BS) formalism adjusted for QCD, in order to extract an ``experimental'' strong coupling \alpha_s^{exp}(Q^2) below 1 GeV by comparison with the meson spectrum. The BS potential follows from a proper ansatz on the Wilson loop to encode confinement and is the sum of a one-gluon-exchange and a confinement terms. Besides, the common perturbative strong coupling is replaced by the ghost-free expression \alpha_E(Q^2) according to the prescription of Analytic Perturbation Theory (APT). The agreement of \alpha_s^{exp}(Q^2) with the APT coupling \alpha_E(Q^2) turns out to be reasonable from 1 GeV down to the 200 MeV scale, thus confirming quantitatively the validity of the APT prescription. Below this scale, the experimental points could give a hint on the vanishing of \alpha_s(Q^2) as Q approaches zero. This infrared behaviour would be consistent with some lattice results and a ``massive'' generalization of the APT approach. As a main result, we claim that the combined BS-APT theoretical scheme provides us with a rather satisfactory correlated understanding of very high and rather low energy phenomena from few hundreds MeV to few hundreds GeV.Comment: Preliminary revision. Typos corrected, comments and references adde

    The momentum distribution of J/psi in B decays

    Full text link
    The discrepancy between theory and data in the momentum distribution of slow J/psi in B decays has been several times addressed as a puzzle. Using the most recent results on exclusive B decays into J/psi and heavy kaons or exotic mesons and reconsidering the non-relativistic-QCD calculation of the color octet fragmentation component, we show that an improvement in the comparison between data and theory can be obtained. There is still room for a better fit to data and this may imply that new exotic mesons of the XYZ kind have yet to be discovered.Comment: 4 pages, 2 figures, 2 tables. To appear in Physical Review

    Application of a comprehensive methodology for the evaluation of social innovations in rural communities

    Get PDF
    open4noThis project has received funding from the European Union’s Horizon 2020 Research and Innovation Program under Grant Agreement No. 677622 (H2020 SIMRA–Social Innovation in Marginalised Rural Areas–Project).Despite the growing interest in social innovation (SI) in agriculture, the literature lacks validated tools for evaluating such initiatives. This paper provides an empirical application of the evaluation approach developed within the H2020 SIMRA project to a pilot experience conducted in a rural area of Southern Italy. The value added by this case study is the application of the five types of criteria used by the OECD for the evaluation of development programs, which are commonly referred to as REEIS: relevance, effectiveness, efficiency, impact, and sustainability. This experiment demonstrates the adequacy of the evaluation framework in identifying strengths and weaknesses of the initiative, according to a multifaceted perspective. The overall evaluation proves that most indicators fall under the high (48%) and medium categories (36%), and only few indicators are low (16%). The usefulness of the evaluation results is manifold. First, this evaluation highlights relevant arguments to support the communication strategy addressed at civil society, therefore reinforcing the civic engagement of the initiative, which is the distinctive feature of SI. Second, it supports project managers in addressing interventions to face emerging weaknesses. Finally, the evaluation provides factual evidence to policy makers to perform cost-effective analysis of rural development policies.openBaselice A.; Prosperi M.; Marini Govigli V.; Lopolito A.Baselice A.; Prosperi M.; Marini Govigli V.; Lopolito A

    A novel integral representation for the Adler function

    Get PDF
    New integral representations for the Adler D-function and the R-ratio of the electron-positron annihilation into hadrons are derived in the general framework of the analytic approach to QCD. These representations capture the nonperturbative information encoded in the dispersion relation for the D-function, the effects due to the interrelation between spacelike and timelike domains, and the effects due to the nonvanishing pion mass. The latter plays a crucial role in this analysis, forcing the Adler function to vanish in the infrared limit. Within the developed approach the D-function is calculated by employing its perturbative approximation as the only additional input. The obtained result is found to be in reasonable agreement with the experimental prediction for the Adler function in the entire range of momenta 0Q2<0 \le Q^2 < \infty.Comment: 11 pages, 3 figure

    Radioactive contamination of ZnWO4 crystal scintillators

    Full text link
    The radioactive contamination of ZnWO4 crystal scintillators has been measured deep underground at the Gran Sasso National Laboratory (LNGS) of the INFN in Italy with a total exposure 3197 kg x h. Monte Carlo simulation, time-amplitude and pulse-shape analyses of the data have been applied to estimate the radioactive contamination of the ZnWO4 samples. One of the ZnWO4 crystals has also been tested by ultra-low background gamma spectrometry. The radioactive contaminations of the ZnWO4 samples do not exceed 0.002 -- 0.8 mBq/kg (depending on the radionuclide), the total alpha activity is in the range: 0.2 - 2 mBq/kg. Particular radioactivity, beta active 65Zn and alpha active 180W, has been detected. The effect of the re-crystallization on the radiopurity of the ZnWO4 crystal has been studied. The radioactive contamination of samples of the ceramic details of the set-ups used in the crystals growth has been checked by low background gamma spectrometry. A project scheme on further improvement of the radiopurity level of the ZnWO4 crystal scintillators is briefly addressed.Comment: 15 pages, 8 figures, 6 tables, submitted for publicatio

    Quantum simulations of strongly coupled quark-gluon plasma

    Full text link
    A strongly coupled quark-gluon plasma (QGP) of heavy constituent quasiparticles is studied by a path-integral Monte-Carlo method, which improves the corresponding classical simulations by extending them to the quantum regime. It is shown that this method is able to reproduce the lattice equation of state and also yields valuable insight into the internal structure of the QGP. The results indicate that the QGP reveals liquid-like rather than gas-like properties. At temperatures just above the critical one it was found that bound quark-antiquark states still survive. These states are bound by effective string-like forces. Quantum effects turned out to be of prime importance in these simulations.Comment: 8 pages, 10 figures, revised version of the contribution to proceedings of "Int. Workshop on High Density Nuclear Matter", Cape Town, 5-10 Apr., 201

    Model independent result on possible diurnal effect in DAMA/LIBRA-phase1

    Get PDF
    The results obtained in the search for possible diurnal effect in the single-hit low energy data collected by DAMA/LIBRA-phase1 (total exposure: 1.04 ton x yr) deep underground at the Gran Sasso National Laboratory (LNGS) of the I.N.F.N. are presented. At the present level of sensitivity the presence of any significant diurnal variation and of diurnal time structures in the data can be excluded for both the cases of solar and sidereal time. In particular, the diurnal modulation amplitude expected, because of the Earth diurnal motion, on the basis of the DAMA Dark Matter annual modulation results is below the present sensitivity.Comment: 14 pages, 5 figures, 2 tables; in publication on Eur. Phys. J.
    corecore