1,293 research outputs found
Control of grain size in sublimation-grown CdTe, and the improvement in performance of devices with systematically increased grain size
A method to control the grain size of CdTe thin films deposited by close space sublimation using chamber pressure is demonstrated. Grain diameter is shown to increase in the pressure range 2–200 Torr, following the linear relationship D (?m)=0.027×P (Torr)+0.90. A mechanism is proposed to explain the dominance of the 111 preferred orientation in the small-grained, but not the large-grained films. For a series of CdTe/CdS solar cells in which the only variable was grain size, the performance parameters were seen to increase from 0.54% (0.94 ?m grains) up to a plateau of 11.3% (?3.6 ?m grains). This corresponds to the point at which the series resistance is no longer dominated by grain boundaries, but by the contacts
Interaction corrections to the Hall coefficient at intermediate temperatures
We investigate the effect of electron-electron interaction on the temperature
dependence of the Hall coefficient of 2D electron gas at arbitrary relation
between the temperature and the elastic mean-free time . At small
temperature we reproduce the known relation between the
logarithmic temperature dependences of the Hall coefficient and of the
longitudinal conductivity. At higher temperatures, this relation is violated
quite rapidly; correction to the Hall coefficient becomes whereas
the longitudinal conductivity becomes linear in temperature.Comment: 4 pages, 3 .eps figure
Room temperature coherent spin alignment of silicon vacancies in 4H- and 6H-SiC
We report the realization of the optically induced inverse population of the
ground-state spin sublevels of the silicon vacancies () in
silicon carbide (SiC) at room temperature. The data show that the probed
silicon vacancy spin ensemble can be prepared in a coherent superposition of
the spin states. Rabi nutations persist for more than 80 s. Two opposite
schemes of the optical alignment of the populations between the ground-state
spin sublevels of the silicon vacancy upon illumination with unpolarized light
are realized in 4H- and 6H-SiC at room temperature. These altogether make the
silicon vacancy in SiC a very favorable defect for spintronics, quantum
information processing, and magnetometry.Comment: 4 pages, 3 picture
Interactions in high-mobility 2D electron and hole systems
Electron-electron interactions mediated by impurities are studied in several
high-mobility two-dimensional (electron and hole) systems where the parameter
changes from 0.1 to 10 ( is the momentum relaxation
time). This range corresponds to the \textit{intermediate} and \textit
{ballistic} regimes where only a few impurities are involved in
electron-electron interactions. The interaction correction to the Drude
conductivity is detected in the temperature dependence of the resistance and in
the magnetoresistance in parallel and perpendicular magnetic fields. The
effects are analysed in terms of the recent theories of electron interactions
developed for the ballistic regime. It is shown that the character of the
fluctuation potential (short-range or long-range) is an important factor in the
manifestation of electron-electron interactions in high-mobility 2D systems.Comment: 22 pages, 11 figures; to appear in proceedings of conference
"Fundamental Problems of Mesoscopic Physics", Granada, Spain, 6-11 September,
200
The multiplicity and the spectra of secondaries correlated with the leading particle energy
The spectra of leading particles of different nature in pp-collisions at E sub 0 = 33 GeV are obtained. The multiplicities and the spectra of secondaries, mesons, gamma-quanta, lambda and lambda-hyperons and protons for different leading particle energy ranges are determined
Effects of Electron-Electron and Electron-Phonon Interactions in Weakly Disordered Conductors and Heterostuctures
We investigate quantum corrections to the conductivity due to the
interference of electron-electron (electron-phonon) scattering and elastic
electron scattering in weakly disordered conductors. The electron-electron
interaction results in a negative -correction in a 3D conductor. In
a quasi-two-dimensional conductor, ( is the thickness, is
the Fermi velocity), with 3D electron spectrum this correction is linear in
temperature and differs from that for 2D electrons (G. Zala et. al., Phys.
Rev.B {\bf 64}, 214204 (2001)) by a numerical factor. In a
quasi-one-dimensional conductor, temperature-dependent correction is
proportional to . The electron interaction via exchange of virtual phonons
also gives -correction. The contribution of thermal phonons interacting
with electrons via the screened deformation potential results in -term and
via unscreened deformation potential results in -term. The interference
contributions dominate over pure electron-phonon scattering in a wide
temperature range, which extends with increasing disorder.Comment: 6 pages, 2figure
The B-quadrilateral lattice, its transformations and the algebro-geometric construction
The B-quadrilateral lattice (BQL) provides geometric interpretation of Miwa's
discrete BKP equation within the quadrialteral lattice (QL) theory. After
discussing the projective-geometric properties of the lattice we give the
algebro-geometric construction of the BQL ephasizing the role of Prym varieties
and the corresponding theta functions. We also present the reduction of the
vectorial fundamental transformation of the QL to the BQL case.Comment: 23 pages, 3 figures; presentation improved, some typos correcte
On the Electron-Electron Interactions in Two Dimensions
In this paper, we analyze several experiments that address the effects of
electron-electron interactions in 2D electron (hole) systems in the regime of
low carrier density. The interaction effects result in renormalization of the
effective spin susceptibility, effective mass, and g*-factor. We found a good
agreement among the data obtained for different 2D electron systems by several
experimental teams using different measuring techniques. We conclude that the
renormalization is not strongly affected by the material or sample-dependent
parameters such as the potential well width, disorder (the carrier mobility),
and the bare (band) mass. We demonstrate that the apparent disagreement between
the reported results on various 2D electron systems originates mainly from
different interpretations of similar "raw" data. Several important issues
should be taken into account in the data processing, among them the dependences
of the effective mass and spin susceptibility on the in-plane field, and the
temperature dependence of the Dingle temperature. The remaining disagreement
between the data for various 2D electron systems, on one hand, and the 2D hole
system in GaAs, on the other hand, may indicate more complex character of
electron-electron interactions in the latter system.Comment: Added refs; corrected typos. 19 pages, 7 figures. To be published in:
Chapter 19, Proceedings of the EURESCO conference "Fundamental Problems of
Mesoscopic Physics ", Granada, 200
- …
