448 research outputs found
TIDE-TSUNAMI INTERACTIONS
In this paper we investigate important dynamics defining tsunami enhancement in the coastal regions and related to interaction with tides. Observations and computations of the Indian Ocean Tsunami usually show amplifications of the tsunami in the near-shore regions due to water shoaling. Additionally, numerous observations depicted quite long ringing of tsunami oscillations in the coastal regions, suggesting either local resonance or the local trapping of the tsunami energy. In the real ocean, the short-period tsunami wave rides on the longer-period tides. The question is whether these two waves can be superposed linearly for the purpose of determining the resulting sea surface height (SSH) or rather in the shallow water they interact nonlinearly, enhancing/reducing the total sea level and currents. Since the near–shore bathymetry is important for the run-up computation, Weisz and Winter (2005) demonstrated that the changes of depth caused by tides should not be neglected in tsunami run-up considerations. On the other hand, we hypothesize that much more significant effect of the tsunami-tide interaction should be observed through the tidal and tsunami currents. In order to test this hypothesis we apply a simple set of 1-D equations of motion and continuity to demonstrate the dynamics of tsunami and tide interaction in the vicinity of the shelf break for two coastal domains: shallow waters of an elongated inlet and narrow shelf typical for deep waters of the Gulf of Alaska
Taking stock of arctic sea ice and climate
Abstract
The relationship among the cause-and-effect of the Arctic atmosphere, sea ice, and ocean is discussed. The increased vulnerability of the Arctic system to anomalous atmospheric forcing can be argued from the perspective that recent ice loss is the result of a long-term preconditioning to thinner ice. Such consequences demonstrate the difficulties inherent in ascertaining how the atmospheric circulation responds to Arctic, and global, climate change. Later-forming sea ice also leads to less protection from the waves of fall storms, affecting coastal communities such as Kivalina and Shishmaref. The coming decades will provide new insights into the complexities of the Arctic climate system and how changes will affect the biological and human communities within and beyond its boundaries
Dynamics of an idealized Beaufort Gyre : 1. The effect of a small beta and lack of western boundaries
Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 121 (2016): 1249–1261, doi:10.1002/2015JC011296.The Beaufort Gyre in the Arctic Ocean differs from a typical moderate-latitude gyre in some major aspects of its dynamics. First, it is located in a basin without a western boundary, which is essential for closing midlatitude circulations. Second, the gradient in Coriolis parameter, β, is small and so the validity of the Sverdrup balance is uncertain. In this paper, we use an idealized two-layer model to examine several processes that are related to these two issues. In a circular basin with closed geostrophic contours in interior, the variability of vorticity in the upper layer is dominated by eddies. But in the time-mean circulation, the main dynamical balance in the basin's interior is between the curl of wind stress and the eddy vorticity fluxes. The torque of friction becomes important along the boundary where the rim current is strong. It is found that the smallness of β has only a relatively small impact in a circular basin without a meridional boundary. The gyre is considerably more sensitive to the existence of a meridional boundary. The time-mean circulation weakens considerably when a peninsula is inserted between the model's center and the rim. (One side of the peninsula is dynamically equivalent to a midlatitude western boundary.) The gyre's sensitivity to β has also increased significantly when a meridional boundary is present. Subsurface ridges have similar effects on the gyre as a boundary, indicating that such topographic features may substitute, to some extents, the dynamical role of a western boundary.This study has been supported by the National Science Foundation's Arctic Natural Science Program for J.Y. and A.P. via grant PRL-1107412, and for AP via grants PRL-1313614, PRL-1302884, and PRL-1107277.2016-08-1
Forum for Arctic Modeling and Observational Synthesis (FAMOS) : past, current, and future activities
© The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Geophysical Research: Oceans 121 (2016): 3803–3819, doi:10.1002/2016JC011898.The overall goal of the Forum for Arctic Modeling and Observational Synthesis (FAMOS) community activities reported in this special issue is to enhance understanding of processes and mechanisms driving Arctic Ocean marine and sea ice changes, and the consequences of those changes especially in biogeochemical and ecosystem studies. Major 2013–2015 FAMOS accomplishments to date are: identification of consistent errors across Arctic regional models; approaches to reduce these errors, and recommendations for the most effective coupled sea ice-ocean models for use in fully coupled regional and global climate models. 2013–2015 FAMOS coordinated analyses include many process studies, using models together with observations to investigate: dynamics and mechanisms responsible for drift, deformation and thermodynamics of sea ice; pathways and mechanisms driving variability of the Atlantic, Pacific and river waters in the Arctic Ocean; processes of freshwater accumulation and release in the Beaufort Gyre; the fate of melt water from Greenland; characteristics of ocean eddies; biogeochemistry and ecosystem processes and change, climate variability, and predictability. Future FAMOS collaborations will focus on employing models and conducting observations at high and very high spatial and temporal resolution to investigate the role of subgrid-scale processes in regional Arctic Ocean and coupled ice-ocean and atmosphere-ice-ocean models.National Science Foundation Office of Polar Programs. Grant Number: PLR-1313614 and PLR- 131364
'Climate Response Functions' for the Arctic Ocean: a proposedcoordinated modeling experiment
A coordinated set of Arctic modelling experiments,
which explore how the Arctic responds to changes
in external forcing, is proposed. Our goal is to compute and
compare “climate response functions” (CRFs) – the transient
response of key observable indicators such as sea-ice extent,
freshwater content of the Beaufort Gyre, etc. – to abrupt
“step” changes in forcing fields across a number of Arctic
models. Changes in wind, freshwater sources, and inflows to
the Arctic basin are considered. Convolutions of known or
postulated time series of these forcing fields with their respective
CRFs then yield the (linear) response of these observables.
This allows the project to inform, and interface
directly with, Arctic observations and observers and the climate
change community. Here we outline the rationale behind
such experiments and illustrate our approach in the context
of a coarse-resolution model of the Arctic based on the
MITgcm. We conclude by summarizing the expected benefits
of such an activity and encourage other modelling groups
to compute CRFs with their own models so that we might begin
to document their robustness to model formulation, resolution,
and parameterization.National Science Foundation (U.S.) (Award 1603557
Arctic circulation regimes
Between 1948 and 1996, mean annual environmental parameters in the Arctic experienced a well-pronounced decadal variability with two basic circulation patterns: cyclonic and anticyclonic alternating at 5 to 7 year intervals. During cyclonic regimes, low sea-level atmospheric pressure (SLP) dominated over the Arctic Ocean driving sea ice and the upper ocean counterclockwise; the Arctic atmosphere was relatively warm and humid, and freshwater flux from the Arctic Ocean towards the subarctic seas was intensified. By contrast, during anticylonic circulation regimes, high SLP dominated driving sea ice and the upper ocean clockwise. Meanwhile, the atmosphere was cold and dry and the freshwater flux from the Arctic to the subarctic seas was reduced. Since 1997, however, the Arctic system has been under the influence of an anticyclonic circulation regime (17 years) with a set of environmental parameters that are atypical for this regime. We discuss a hypothesis explaining the causes and mechanisms regulating the intensity and duration of Arctic circulation regimes, and speculate how changes in freshwater fluxes from the Arctic Ocean and Greenland impact environmental conditions and interrupt their decadal variability
Skill metrics for evaluation and comparison of sea ice models
© The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Geophysical Research: Oceans 120 (2015): 5910–5931, doi:10.1002/2015JC010989.Five quantitative methodologies (metrics) that may be used to assess the skill of sea ice models against a control field are analyzed. The methodologies are Absolute Deviation, Root-Mean-Square Deviation, Mean Displacement, Hausdorff Distance, and Modified Hausdorff Distance. The methodologies are employed to quantify similarity between spatial distribution of the simulated and control scalar fields providing measures of model performance. To analyze their response to dissimilarities in two-dimensional fields (contours), the metrics undergo sensitivity tests (scale, rotation, translation, and noise). Furthermore, in order to assess their ability to quantify resemblance of three-dimensional fields, the metrics are subjected to sensitivity tests where tested fields have continuous random spatial patterns inside the contours. The Modified Hausdorff Distance approach demonstrates the best response to tested differences, with the other methods limited by weak responses to scale and translation. Both Hausdorff Distance and Modified Hausdorff Distance metrics are robust to noise, as opposed to the other methods. The metrics are then employed in realistic cases that validate sea ice concentration fields from numerical models and sea ice mean outlook against control data and observations. The Modified Hausdorff Distance method again exhibits high skill in quantifying similarity between both two-dimensional (ice contour) and three-dimensional (ice concentration) sea ice fields. The study demonstrates that the Modified Hausdorff Distance is a mathematically tractable and efficient method for model skill assessment and comparison providing effective and objective evaluation of both two-dimensional and three-dimensional sea ice characteristics across data sets.U.S. National Science Foundation (NSF) Grant Number: PLR-0804017, NASA JPL OVWST, Bureau of Ocean Energy Management (BOEM), FSU Grant Number: M12PC00003, NSF Grant Numbers: projects PLR-0804010 , PLR-1313614 , PLR-1203720, BP/The Gulf of Mexico Research Initiative Grant Number: SA12-12, GoMRI-008, DoD High Performance Computing Modernization Progra
Arctic Sea Ice Decline Significantly Contributed to the Unprecedented Liquid Freshwater Accumulation in the Beaufort Gyre of the Arctic Ocean
The Beaufort Gyre (BG) is the largest liquid freshwater reservoir of the Arctic Ocean. The liquid freshwater content (FWC) significantly increased in the BG in the 2000s during an anticyclonic wind regime and remained at a high level despite a transition to a more cyclonic state in the early 2010s. It is not well understood to what extent the rapid sea ice decline during this period has modified the trend and variability of the BG liquid FWC in the past decade. Our numerical simulations show that about 50% of the liquid freshwater accumulated in the BG in the 2000s can be explained by the sea ice decline caused by the Arctic atmospheric warming. Among this part of the FWC increase, 60% can be attributed to surface freshening associated with the reduction of the net sea ice thermodynamic growth rate, and 40% to changes in ocean circulation, which makes freshwater more accessible to the BG for storage. Thus, the rapid increase of the BG FWC in the 2000s was due to the concurrence of the anticyclonic wind regime and the high freshwater availability. We also find that if the Arctic sea ice had not declined, the liquid FWC in the BG would have shown a stronger decreasing tendency at the beginning of the 2010s owing to the cyclonic wind regime. From our results we argue that changes in sea ice conditions should be adequately taken into account when it comes to understanding and predicting variations of BG liquid FWC in a changing climate
- …
