141 research outputs found

    Noble gas constraints on the fate of arsenic in groundwater

    Get PDF
    Groundwater contamination of geogenic arsenic (As) remains a global health threat, particularly in south-east Asia. The prominent correlation often observed between high As concentrations and methane (CH4_{4}) stimulated the analysis of the gas dynamics in an As contaminated aquifer, whereby noble and reactive gases were analysed. Results show a progressive depletion of atmospheric gases (Ar, Kr and N2_{2}) alongside highly increasing CH4_{4}, implying that a free gas phase comprised mainly of CH4_{4} is formed within the aquifer. In contrast, Helium (He) concentrations are high within the CH4_{4} (gas) producing zone, suggesting longer (groundwater) residence times. We hypothesized that the observed free (CH4_{4}) gas phase severely detracts local groundwater (flow) and significantly reduces water renewal within the gas producing zone. Results are in-line with this hypothesis, however, a second hypothesis has been developed, which focuses on the potential transport of He from an adjacent aquitard into the (CH4_{4}) gas producing zone. This second hypothesis was formulated as it resolves the particularly high He concentrations observed, and since external solute input from the overlying heterogeneous aquitard cannot be excluded. The proposed feedback between the gas phase and hydraulics provides a plausible explanation of the anti-intuitive correlation between high As and CH4_{4}, and the spatially highly patchy distribution of dissolved As concentrations in contaminated aquifers. Furthermore, the increased groundwater residence time would allow for the dissolution of more crystalline As-hosting iron(Fe)-oxide phases in conjunction with the formation of more stable secondary Fe minerals in the hydraulically-slowed (i.e., gas producing) zone; a subject which calls for further investigation

    Comparison of parameter sensitivities between a laboratory and field scale model of uranium transport in a dual domain, distributed rate reactive system

    Get PDF
    A laboratory-derived conceptual and numerical model for U(VI) transport at the Hanford 300A site, Washington, USA, was applied to a range of field-scale scenarios of different geochemical complexity to identify the importance of individual processes in controlling the fate of U(VI), as well as to elucidate the characteristic differences between well-defined laboratory and the more complex field-scale conditions. Therefore, a rigorous sensitivity analysis was carried out for the various simulation scenarios. The underlying conceptual and numerical model, originally developed from column experiment data, includes distributed rate surface complexation kinetics of U(VI), aqueous speciation, and physical nonequilibrium transport processes. The field scenarios accounted additionally for highly transient groundwater flow and variable geochemical conditions driven by frequent water level changes of the nearby Columbia River. The results of the sensitivity analysis showed not only similarities but also important differences in parameter sensitivities between the laboratory and field-scale models. It was found that the actual degree of sorption disequilibrium, actual concentration of sorbed U(VI), and the sorption extent (i.e., theoretical concentration of sorbed U(VI) at equilibrium) are the major controls for the magnitude of the calculated parameter sensitivities. These internal model variables depended mainly on (1) the groundwater flow conditions, i.e., the relatively long phases of limited groundwater movement in the field scale (intercepted by short peak flow events) and the long sustained flow phases in the column experiment (intercepted by relatively short stop flow events), and (2) the sampling location in the field-scale model, i.e., plume fringe versus plume center. Copyright 2010 by the American Geophysical Union

    Toward a more sustainable mining future with electrokinetic in situ leaching

    Get PDF
    This is the final version. Available on open access from AAAS via the DOI in this recordData and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Additional data related to this paper may be requested from the authors.Metals are currently almost exclusively extracted from their ore via physical excavation. This energy-intensive process dictates that metal mining remains among the foremost CO2 emitters and mine waste is the single largest waste form by mass. We propose a new approach, electrokinetic in situ leaching (EK-ISL), and demonstrate its applicability for a Cu-bearing sulfidic porphyry ore. In laboratory-scale experiments, Cu recovery was rapid (up to 57 weight % after 94 days) despite low ore hydraulic conductivity (permeability = 6.1 mD; porosity = 10.6%). Multiphysics numerical model simulations confirm the feasibility of EK-ISL at the field scale. This new approach to mining is therefore poised to spearhead a new paradigm of metal recovery from currently inaccessible ore bodies with a markedly reduced environmental footprint.Minerals Research Institute of Western Australia (MRIWA

    Dilfikar

    Get PDF
    P. Fahriye'nin Hanımlara Mahsus Gazete'de tefrika edilen Dilfikar adlı roman

    Modelling of multi-minerals kinetic evolution in hyper-alkaline leachate for a 15-year experiment

    Get PDF
    Cement has been widely used for low- to intermediate-level radioactive waste management; however, the long-term modelling of multiple mineral transfer between the cement leachate and the host rock of a geological disposal facility remains a challenge due to the strong physical-chemical interactions within the chemically disturbed zone. This paper presents a modelling study for a 15-year experiment simulating the reaction of crystalline basement rock with evolved near-field groundwater (pH = 10.8). A mixed kinetic equilibrium (MKE) modelling approach was employed to study the dolomite-rich fracture-filling assemblage reacting with intermediate cement leachate. The study found that the mineralogical and geochemical transformation of the system was driven by the kinetically controlled dissolution of the primary minerals (dolomite, calcite, quartz, k-feldspar and muscovite). The initial high concentration of calcium ions appeared to be the main driving force initiating the dedolomitization process, which played a significant role in the precipitation of secondary talc, brucite and Mg-aluminosilicate minerals. The modelling study also showed that most of the initially precipitated calcium silicon hydrate phases redissolved and formed more stable calcium silicon aluminium hydrate phases. The findings highlight the importance of a deep and insightful understanding of the geochemical transformations based on the type and characteristics of the host rock, where the system is under out of equilibrium conditions, and the rates of mineral reactions

    Reactive transport codes for subsurface environmental simulation

    Full text link

    Levorphanol Revisited

    No full text
    • …
    corecore