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Abstract 18 

 19 

Cement has been widely used for low- to intermediate-level radioactive waste management; 20 

however, the long-term modelling of multiple mineral transfer between the cement leachate and 21 

the host rock of a geological disposal facility remains a challenge due to the strong physical-22 

chemical interactions within the chemically-disturbed zone. This paper presents a modelling study 23 

for a 15-year experiment simulating the reaction of crystalline basement rock with evolved near-24 

field groundwater (pH = 10.8). A mixed kinetic equilibrium (MKE) modelling approach was 25 

employed to study the dolomite-rich fracture-filling assemblage reacting with intermediate cement 26 

leachate. The study found that the mineralogical and geochemical transformation of the system 27 

was driven by the kinetically-controlled dissolution of the primary minerals ( dolomite, calcite, 28 

quartz, k-feldspar and muscovite). The initial high concentration of calcium ions appeared to be 29 

the main driving force initiating the dedolomitization process, which played a significant role in 30 

the precipitation of secondary talc, brucite and Mg-aluminosilicate minerals. The modelling study 31 

also showed that most of the initially precipitated calcium silicon hydrate phases redissolved and 32 

formed more stable calcium silicon aluminium hydrate phases. The findings highlight the 33 

importance of a deep and insightful understanding of the geochemical transformations based on 34 

the type and characteristics of the host rock, where the system is under out of equilibrium 35 

conditions, and the rates of mineral reactions. 36 

 37 

Keywords: Cement, Radioactive waste disposal, Mineral evolution, Modelling, Cement leachate, 38 

Alkaline fluids, PHREEQC 39 

 40 



1. Introduction 41 

 42 

Underground geological facilities are the most secure places to store/dispose of radioactive wastes 43 

generated during the civil/military programmes, and also generated through scientific, engineering 44 

and medical usage. One concept for low- and intermediate-level radioactive waste involves 45 

constructing an underground facility in a host rock at a depth of several hundred metres, then 46 

backfilling with a cementitious material. Such a facility is designed to achieve two main safety 47 

objectives: 1) to isolate the radioactive waste from the biosphere, and 2) to provide multiple 48 

barriers (including a high pH environment) to minimise radionuclide mobility over long 49 

timescales. 50 

 51 

The containment system involves multiple barriers in which the engineered barriers work 52 

alongside natural ones (e.g. stable and low permeability host rock) to prevent the release of 53 

radionuclides to the biosphere. The concept has been adopted by several countries, including the 54 

UK, Sweden and South Korea (Authority 2010a; Francis et al. 1997; Kim et al. 2007; Skogsberg 55 

and Ingvarsson 2006). The final design and performance assessment of the engineered barrier can 56 

be influenced by the waste inventory, the surrounding conditions that can be expected during the 57 

performance assessment timescale and the degree of reaction with the surrounding host geology. 58 

Usually, the near field plays a crucial role in providing long-term control over radionuclide 59 

migration, which limits their release to the surrounding environment. Over time, the chemical 60 

properties (e.g., sorption capacity, reactive surface area) and physical properties (e.g., porosity, 61 

permeability) of the host rock in the near field barrier evolve as a result of the interactions with 62 

their surroundings and with other barriers. As this will happen long before any potential migration 63 



of radionuclides, it is useful to understand and to be able to predict these changes, as they are likely 64 

to influence potential radionuclide retardation. 65 

 66 

One of the challenges in evaluating the effectiveness of an engineered barrier is understanding the 67 

extent to which the evolving process of the near field host rock may occur. This will help in 68 

assuring that the engineered barrier materials will fulfil their safety functions over performance 69 

assessment timescales. The evolution of near field properties will strongly be linked to the 70 

interaction of the host rock and high pH water leaching out of the cement (the ‘alkaline disturbed 71 

zone’, ADZ). 72 

 73 

Cement leachate is usually formed when the facility is closed and becomes saturated with 74 

groundwater that then reacts and equilibrates with the cementitious engineered barrier. The 75 

reaction process results in a high-pH plume that inhibits corrosion and limits some radionuclide 76 

solubility. Eventually, some cement leachate will migrate into the surrounding rock and create a 77 

chemically disturbed zone (CDZ) at the interface between the cement barrier and the host rock, 78 

initiating a series of reactions (Chen et al. 2016; Chen and Thornton 2018; Chen et al. 2015). The 79 

dissolution of primary minerals in the host rock is likely to be accompanied by precipitation of 80 

new minerals with evolved chemical and physical properties that may contribute to decreased 81 

radionuclide mobility through processes such as the reduction in permeability, increased sorption, 82 

and coprecipitation. 83 

 84 

For a cement-based geological disposal facility, several experimental studies and numerical 85 

models have been performed to demonstrate the reaction of highly-alkaline cement leachate with 86 



minerals in the host rock (Berner 1990; Harris et al. 2001a; Harris et al. 2001b; Schwyn et al. 87 

2003). Previous research has considered three cement leachate evolution stages based on the 88 

progression of pH values (Small et al. 2016), which can be summarised as: young cement leachate 89 

(YCL), intermediate cement leachate (ICL) and old cement leachate (OCL). The reaction of ICL 90 

with the near field host rock is the focus of this study, and this may result in the formation of a 91 

changing series of mineral assemblages, changes to mineral surfaces, variations in pH, as well as 92 

other changes (Moyce et al. 2014). These processes will eventually affect the sorption capability 93 

of radionuclides at the mineral surface (Authority 2010b). 94 

 95 

The paper models mineral evolution in a 15-year laboratory experiment, analysing interlinks 96 

among multiple minerals known to occur in Borrowdale Volcanic Group (BVG) rocks in reaction 97 

with ICL (the BVG is an important basement rock in north-west England, and which was 98 

previously investigated by UK Nirex Limited (Francis et al. 1997). Importantly, the rock sample 99 

comprised a hydraulically-conductive dolomite-rich fracture, and thought dolomite is only a minor 100 

phase in the rock overall; it is a major phase in direct contact with current groundwater. The 101 

modelling process implements the concept of a mixed kinetic equilibrium approach (MKE), which 102 

combines the advantages of both equilibrium and kinetic formulations to enable the modelling of 103 

complex geochemical reactions (Bethke 1994; Bethke 1996; Chen and Thornton 2018; Van der 104 

Lee 1997; Van der Lee 1998; Westall 1986). This approach was initially developed to overcome 105 

the shortage of kinetic data for minerals that dissolve and precipitate (Soetaert et al. 1996), 106 

assuming a faster reaction by means of the equilibrium concept and a slower reaction controlled 107 

by the kinetic process (Atkinson et al. 1988; Hoch et al. 2012). The model is used to develop a 108 



deeper understanding of the pH evolution along with quantification of the amount of host rock 109 

minerals dissolving or precipitating in the near field/alkaline disturbed zone. 110 

 111 

2. Experimental study 112 

 113 

The experiment was conducted by the British Geological Survey (Moyce et al. 2014; Rochelle et 114 

al. 2016; Rochelle et al. 1997) over the course of 15 years, starting in 1995, and being part of a 115 

larger series of experiments of different durations. The original intent of the experiment was to 116 

study the reaction of a sample of Ordovician age Borrowdale Volcanic Group (BVG) rock with 117 

both a pH 13 ‘young near-field porewater’ (YNFP) and a pH 12 ‘evolved near-field groundwater’ 118 

(ENFG) (rock type and fluid naming convention based on that used in the Nirex Safety Assessment 119 

research programme [NSARP] at the time). These fluids represent, respectively, ‘young cement 120 

leachate (YCL) and ‘intermediate cement leachate’ (ICL) (naming convention used in the 121 

BIGRAD project) released from a representative cementitious barrier that could be used in a deep 122 

geological disposal facility for intermediate-level radioactive waste. Although the experiments 123 

significantly exceeded their originally planned durations and also that of the NSARP, it was useful 124 

to continue them as the BVG contains many mineral phases typical of crystalline basement rocks 125 

in general. In the experiment of relevance to the study presented here, a dolomite-rich fracture 126 

assemblage in the BVG was reacted with YNFP, and the resultant solid and fluid products initially 127 

examined after 15 months and also for up to 15 years. The focus of the current study was to better 128 

understand the mineralogical evolution of this experimental system for the entire 15 years, in order 129 

to investigate longer-term geochemical processes. 130 

 131 



 132 

Figure 1: Stainless steel pressure vessels lined with Teflon® used to contain the BVG and synthetic CDZ-type fluid 133 
experiments. 134 

 135 

Two PTFE-lined stainless steel vessels, of 150 mL and 100 mL, were used for the ‘reacting’ and 136 

blank experiments, respectively (Figure 1). The solid phase consisted of a piece of drill core 137 

containing altered wall rock and a dolomite-rich fracture fill from a hydrogeological conductive 138 

fracture zone in the BVG. The 2-kg rock sample was then disaggregated and sieved (Moyce et al. 139 

2014; Rochelle et al. 1997). In the ‘reacting’ experiment, 35 g of disaggregated BVG was used 140 

with 140 g of groundwater-cement leachate, and the stainless-steel vessel was kept in a 70°C oven. 141 

The smaller blank experiment just contained the leachate. The ENFG leachate was presented by 142 

slightly saline water (Na/CaCl) saturated with Ca(OH)2 (Table 1). All preparation processes were 143 

performed under a nitrogen atmosphere to prevent reaction of the alkaline water with atmospheric 144 

carbon dioxide. During the reaction, the rock underwent mineralogical changes that changed the 145 

concentration of the dissolved ions in the ENFG leachate. Experiments were terminated and 146 

sampled after the fourth, ninth and fifteenth months (Rochelle et al. 2016; Rochelle et al. 1997), 147 

and importantly also at the end of the fifteenth year (Moyce et al. 2014). The solid experimental 148 

residues were washed in propan-2-ol and then dried prior to storage and analysis. For X-ray 149 

diffraction analysis, a subsample was milled and a 10% corundum (Al2O3) standard added. A 150 

diffractometer instrument (PANalytical X’Pert Pro) with PANalytical X’Pert Highscore Plus 151 



software was then used to carry out the final mineralogical analysis (Moyce et al. 2014; Rochelle 152 

et al. 2016). 153 

 154 

Table 1: Composition of the Evolved Near-Field Groundwater (ENFG) prepared by the British Geological Survey 155 
(Rochelle et al. 2016; Rochelle et al. 1997). 156 

Chemical component Concentration (mg/L) 

Al 4.17 

B 0.335 

Ba 0.017 

Br 23.2 
CO3 20 
Ca 1930 
Cl  15100 
F 0.03 
Fe 0.120 
K 185 
Li 0.153 
Mg 0.117 
Mn 0.010 
Na 9160 
SO4 1090 
NO3 20 
Si 2.07 
Sr 166 

pH (at 70ºC)  10.84 
 157 

3. Modelling methodology 158 

 159 

The conceptual model developed for this study is presented in Figure 2. The idea was developed 160 

based on theoretical and experimental analysis. The MKE approach is based upon the timescale of 161 

each mineral reaction rate (i.e., which reaction is faster and which slower). For each mineral, either 162 

a kinetic or equilibrium approach, or a mix of both (if the difference between rates was more than 163 

102), was used to provide the supporting information for the software. The concept of MKE has 164 

been widely implemented in subsurface geochemical applications, as it allows both kinetic and 165 



equilibrium reactions to model a multiphase and multi-component system (Brun and Engesgaard 166 

2002; Lichtner 1996; Mayer et al. 2002; Prommer et al. 2003). 167 

 168 

 169 

Figure 2: Conceptual Model for the Mixed Kinetic-Equilibrium approach. 170 

 171 

3.1. Conceptual model software and thermodynamic data 172 

The simulation carried out in this study was performed with the PHREEQC code (version 3.6.1). 173 

The software can compute a wide range of chemical reactions in aqueous geochemical systems, 174 

utilising both chemical thermodynamic and kinetic data. In recent years, several databases have 175 

been developed by various authors to optimise the use of this geochemical code. For a cement 176 

leachate–host rock reaction in an underground repository, the Lawrence Livermore National 177 

Laboratory (LLNL), Thermoddem, Thermoddem DB and CEMDATA DB databases were applied 178 

by previous researchers (Blanc et al. 2012; Lothenbach et al. 2019; Wolery 1992; Wolery and 179 

Daveler 1992).  In this work, LLNL database (Delany and Lundeen 1990) –was utilise though with 180 

some modifications, namely; the addition of kinetic information for calcium silicon hydrate (CSH) 181 

and calcium silicon aluminium hydrate phases (CASH). This database seemed to be the best option 182 

available since it has kinetic information for a variety of minerals and aqueous species, especially 183 

carbonate minerals that are required for the simulation of phases present in the BVG rock sample. 184 

The data of thermodynamic reactions (equilibrium constants) for the major minerals are shown in 185 



Table 2 (Chen and Thornton 2018). Note that the below values of 𝑙𝑜𝑔 𝐾𝑒𝑞 are valid for the 186 

experiment condition. 187 

 188 

Table 2: Reactions and equilibrium constants for minerals used in the calculations. 189 

Mineral Reaction Log Keq 

Calcite CaCO3 + H+ = Ca++ + HCO3
- 1.8487 

Muscovite KAl3Si3O10(OH)2 +10H+ = K++ 3Al+++ + 3SiO2 + 6H2O 13.5858 

Kaolinite Al2Si2O5(OH)4 +6H+ =   +2Al+++ + 2SiO2 + 5H2O 6.8101 

Quartz SiO2 = +1.0 SiO2 -3.9993 

Dolomite CaMg(CO3)2 + 2H+ = +1.0Ca++ + 1.0 Mg++ + 2 HCO3
- 2.5135 

K-feldspar KAlSi3O8 +4.0000 H+ = + 1.0000 Al+++ + 1.0000 K+ + 2.0000 H2O + 3.0000 SiO2 -0.2753 

Brucite Mg(OH)2 +2H+  =  + 1.0 Mg++ + 2H2O 16.2980 

Tobermorite-11A Ca5Si6H11O22.5 +10H+ = +5Ca++ + 6SiO2 + 10.5H2O 65.6121 

Saponite-Mg Mg3.165Al.33Si3.67O10(OH)2 +7.3200 H+ = + 0.3300 Al+++ + 3.1650 Mg++ + 3.6700 

SiO2 + 4.6600 H2O 

26.2523 

Nontronite-Mg Mg.165Fe2Al.33Si3.67H2O12 +7.3200 H+ = + 0.1650 Mg++ + 0.3300 Al+++ + 2.0000 

Fe+++ + 3.6700 SiO2 + 4.6600 H2O 

-11.6200 

Talc Mg3Si4O10(OH)2 +6.0000 H+  =  + 3.0000 Mg++ + 4.0000 H2O + 4.0000 SiO2 21.1383 

Mesolite 

(Zeolite) 

 

Na.676Ca.657Al1.99Si3.01O10:2.647H2O +7.9600 H+ = + 0.6570 Ca++ + 0.6760 Na+ 

+ 1.9900 Al+++ + 3.0100 SiO2 + 6.6270 H2O 

13.6191 

Stilbite 

(Zeolite) 

 

Ca1.019Na.136K.006Al2.18Si6.82O18:7.33H2O +8.7200 H+ = + 0.0060 K+ + 0.1360 

Na+ + 1.0190 Ca++ + 2.1800 Al+++ + 6.8200 SiO2 + 11.6900 H2O 

 

1.0545 

 190 

3.2. Mineralogical analysis and kinetic information 191 

The mineralogical composition of the BVG rock used in the experiment is shown in Table 3. The 192 

concept of MKE was applied to the minerals existing in the rock that react with the ENFG leachate. 193 

The initial mass of each reactant was calculated based upon its abundance in the 35 g BVG sample 194 

(Rochelle et al. 2016; Rochelle et al. 1997). Note that the original rock sample showed some traces 195 

of other fracture filling phases such as clays, but these were not included in the model. 196 

  197 

 198 

 199 



Table 3: BVG rock sample composition. Analysis conducted by the British Geological Survey (Rochelle et al. 2016; 200 
Rochelle et al. 1997). The mass of each phase (m0) is calculated based on a 35g rock sample. 201 

Mineral Weight % m0 (g) 

Orthoclase 12 4.2 
Quartz 41 14.35 

Dolomite 29 10.15 
Muscovite 13 4.55 
Hematite 2 0.7 
Calcite 3 1.05 

 202 

When cement leachate encounters the surrounding host rock, they will be out of chemical 203 

equilibrium, and local dissolution of existing ‘primary’ minerals will occur. The process releases 204 

new solutes into the reaction system, resulting in the precipitation of new ‘secondary’ minerals. 205 

Some secondary phases can have enhanced sorption and permeability-limiting properties relative 206 

to the primary phases, and are thus beneficial in term of limiting radionuclide migration. Thus it 207 

is important to be able to describe/model the temporal evolution of these phases.  208 

 209 

Commonly, the rate of mineral dissolution is measured experimentally by measuring the rate of 210 

change in solute concentration as a function of time under ‘far from equilibrium’ conditions. To 211 

model the experimental values of dissolution and precipitation, a variety of factors must first be 212 

addressed, which include: the reactive surface area of the mineral, initial and final amounts, the 213 

specific dissolution rate constant, and slowing of reaction as equilibrium is approached. The 214 

availability of these data is one of the challenges in the field of modelling mineral dissolution and 215 

precipitation. The MKE approach is implemented to overcome that drawback with a proper 216 

representation of the geochemical system. Equation 1 is a general form that is usually used to 217 

calculate the overall dissolution rate of minerals (Appelo and Postma 2005; Parkhurst and Appelo 218 

1999; Rimstidt and Barnes 1980). 219 

 220 



𝑹𝒌 = 𝒓𝒌 𝑨𝟎𝑽 ( 𝒎𝒌𝒎𝟎𝒌)𝒏     (1) 221 

where 222 

𝒓𝒌 =  𝒌𝒌 (𝟏 − (𝑰𝑨𝑷𝑲 )𝒌)    (2) 223 

 224 

R is the overall dissolution rate into solution (mol L-1 s-1), 𝑘𝑘 is the specific dissolution rate 225 

(mol/m2/s), A0 is the initial surface area (m2), V is the solution volume (L), m is the moles at a 226 

given time and m0 is the initial moles. (𝑚𝑘/𝑚0𝑘)𝑛 is an interpretation of the changes in the reactive 227 

surface area as a result of changes in the size of the mineral during the dissolution process. The 228 

value of 𝑛 = 2/3 (Appelo and Postma 2005). (𝐼𝐴𝑃/𝐾) (i.e., ion activity divided by equilibrium 229 

constant) is equal to the saturation ratio (SR) of the reactant. 230 

 231 

It is worth noting that clay minerals were not the focus of the original experiment, and that the 232 

exact mica/clay phase(s) present in the fracture of the BVG rock were not fully identified (Moyce 233 

et al. 2014). However, muscovite was chosen to represent this phase(s) in the modelling process 234 

to control aluminium concentration in solution. Table 4 shows the kinetic information (reaction 235 

rate constant, reactive surface area, solution volume) obtained from the literature for the minerals 236 

in BVG that were modelled by the MKE approach (k-feldspar, quartz, dolomite, calcite, 237 

muscovite). Conversely, hematite was modelled by the equilibrium approach only, because of its 238 

low percentage in the rock sample (2%) and its assumed minimal influence on the mineralogical 239 

evolution process. In terms of the precipitation process, for most minerals the kinetics and specific 240 

rates of precipitation are unknown. Therefore, the precipitation of secondary phases was modelled 241 

assuming control by thermodynamic equilibrium. 242 



Table 4: Modelling parameters for the BVG rock. MKE (mixed kinetic equilibrium) 243 

Mineral Modelling Solution 

Volume (L) 

Surface area (m2/g) Rate constant 

(mol m-2 s-1) 

Orthoclase MKE  
 
 
 
 
 

 
0.14 

(Rochelle et 
al. 2016) 

0.02 (De Windt et al. 2008) k (using equation 5) (Appelo and 
Postma 2005) 

Quartz MKE 0.02 (De Windt et al. 2008) k = 1x10-12.2 (70oC) (Worley 1994) 
Dolomite MKE  

0.02 (De Windt et al. 2008) 
k= 1.2x10-12 (Appelo and Postma 2005) 
This value was lowered two orders of 

magnitude (k= 1.2x10-10) 
Muscovite MKE 1.1 (Knauss 1989) k=10-18.1 (Knauss 1989) 

 
 

Calcite 

 
 

MKE 

 
 

0.02 (De Windt et al. 2008) 

k1 = 10^(0.198 - 444.0 / (273.16 + T) ) 

k2 = 10^(2.84 - 2177.0 / (273.16 + T) ) 

k3 = 10^(-1.1 - 1737.0 / (273.16 + T) ) 

in which T denotes temperature. 
(Appelo and Postma 2005; Plummer et 

al. 1978) 
Hematite Equilibrium - - - 

 244 

1) Quartz (𝑺𝒊𝑶𝟐) 245 

As per equation (1) and (2), the overall dissolution kinetic equation for quartz will be:  246 

𝑹𝑸𝒖𝒂𝒓𝒕𝒛 = 𝒌𝑸𝒖𝒂𝒓𝒕𝒛 (𝑨𝟎𝑽 ) ( 𝒎𝒎𝟎)𝟎.𝟔𝟕 (𝟏 − (𝑰𝑨𝑷𝑲 )𝑸𝒖𝒂𝒓𝒕𝒛)         (3) 247 

 248 

2) K-feldspar (𝑲𝑨𝒍𝑺𝒊𝟑𝑶𝟖)  249 

 250 

The overall dissolution rate proposed by (Appelo and Postma 2005; Parkhurst and Appelo 1999) 251 

is used to simulate k-feldspar reaction at specific temperatures and pH value:  252 

𝑹𝑲−𝒇𝒆𝒍𝒅𝒔𝒑𝒂𝒓 = 𝒌𝑲−𝒇𝒆𝒍𝒅𝒔𝒑𝒂𝒓  (𝑨𝟎𝑽 ) ( 𝒎𝒎𝟎)𝟎.𝟔𝟕 (𝟏 − (𝑰𝑨𝑷𝑲 )𝑲−𝒇𝒆𝒍𝒅𝒔𝒑𝒂𝒓)       (4) 253 

where 254 

𝒌𝑲−𝒇𝒆𝒍𝒅𝒔𝒑𝒂𝒓 = 𝒌𝑯+ [𝑯+]𝒏𝒇𝑯 + 𝒌𝑯𝟐𝑶 𝟏𝒇𝑯𝟐𝑶 + 𝒌𝑶𝑯− [𝑶𝑯−]𝒐𝒇𝑶𝑯 + 𝒌𝑪𝑶𝟐 [𝑷𝑪𝑶𝟐]𝟎.𝟔𝒇𝑪𝑶𝟐        (5) 255 

 256 



where 𝑘𝐾−𝑓𝑒𝑙𝑑𝑠𝑝𝑎𝑟 is the specific reaction rate (mol m-2 s-1), ki are the solute rate coefficients (mol 257 

m-2 s-1), and fi are inhibition factors.  258 

 259 

3) Calcite (𝑪𝒂𝑪𝑶𝟑) 260 

 261 

The specific dissolution rate for calcite was described by (Appelo and Postma 2005; Parkhurst and 262 

Appelo 1999; Plummer et al. 1978): 263 

 264 𝒓𝒄𝒂𝒍𝒄𝒊𝒕𝒆 =  [𝒌𝟏[𝑯+] + 𝒌𝟐[𝑯𝟐𝑪𝑶𝟑] + 𝒌𝟑[𝑯𝟐𝑶]] ∗  [𝟏 − (𝑰𝑨𝑷𝑲 )𝑪𝒂𝒍𝒄𝒊𝒕𝒆
𝟐𝟑 ]       (6) 265 

 266 

from equation (1), the overall dissolution rate of calcite will then be: 267 

 268 𝑹𝒄𝒂𝒍𝒄𝒊𝒕𝒆 =   𝒓𝒄𝒂𝒍𝒄𝒊𝒕𝒆  (𝑨𝟎𝑽 ) ( 𝒎𝒎𝟎)𝟎.𝟔𝟕        (7) 269 

  270 

The value of the coefficients k1, k2 and k3 in equations (6) are calculated by (Plummer et al. 1978) 271 

by fitting them to the experimental data as a function of temperature. 272 

 273 

4) Dolomite [𝑪𝒂𝑴𝒈(𝑪𝑶𝟑)𝟐] 274 

The specific dissolution rate of dolomite is described below by (Appelo et al. 1984; Appelo and 275 

Postma 2005; Parkhurst and Appelo 1999).  276 

𝒓𝑫𝒐𝒍𝒐𝒎𝒊𝒕𝒆 =  − 𝒌𝑫𝒐𝒍𝒐𝒎𝒊𝒕𝒆  𝒍𝒐𝒈 (𝑰𝑨𝑷𝑲 )𝑫𝒐𝒍𝒐𝒎𝒊𝒕𝒆     (8) 277 

then, the overall dissolution rate of dolomite will be: 278 

 279 

𝑹𝑫𝒐𝒍𝒐𝒎𝒊𝒕𝒆 = 𝒓𝑫𝒐𝒍𝒐𝒎𝒊𝒕𝒆  (𝑨𝟎𝑽 ) ( 𝒎𝒎𝟎)𝟎.𝟔𝟕        (9) 280 

 281 



5) Muscovite [𝑲𝑨𝒍𝟐(𝑨𝒍𝑺𝒊𝟑𝑶𝟏𝟎)(𝑶𝑯)𝟐]  282 

 283 

The specific dissolution rate for muscovite was calculated from the below equation, which was 284 

described by (Knauss 1989): 285 

𝒓𝑴𝒖𝒔𝒄𝒐𝒗𝒊𝒕𝒆 = 𝟏𝟎−𝟏𝟖.𝟏[𝒂𝑯+]+𝟎.𝟐𝟐      (10) 286 

then, as per equation (1), the overall dissolution rate of muscovite will be: 287 

 288 𝑹𝑴𝒖𝒔𝒄𝒐𝒗𝒊𝒕𝒆 = 𝒓𝑴𝒖𝒔𝒄𝒐𝒗𝒊𝒕𝒆  (𝑨𝟎𝑽 ) ( 𝒎𝒎𝟎)𝟎.𝟔𝟕      (11) 289 

 290 

3.3.Fluid evaporation 291 

Over the 15-year experiment period, (Rochelle et al. 2016; Rochelle et al. 1997) note that some of 292 

the reacting fluid was lost, most likely through diffusion around the threads in the steel vessel. 293 

Measures were not taken to limit this process, because the experiments were only initially planned 294 

to only run for <18 months. The extent of this process could be estimated based on measured 295 

increases in the concentration of conservative (i.e. inactive) dissolved ions in the experiment. In 296 

both ENFG experiments (blank and reactive), the chloride ion was set as the inactive and 297 

conservative species over the entire experiment period. It was observed that the rate of change in 298 

chloride ion concentration was the same in both solutions, and amounted to a 34% fluid loss 299 

(Moyce et al. 2014). It is crucial that modelling includes this fluid loss since this loss affects the 300 

concentration value (usually measured in mg/L) of all the ions released into the solution. In the 301 

modelling procedure, the simulated result of the chloride ion concentration indicated only a 22% 302 

fluid loss.  303 

 304 

 305 

 306 



3.4.Secondary phases 307 

During the reaction period of 15 years, the chemical characteristics of the system would 308 

significantly evolve and result in multiple cycles of mineral dissolution and precipitation reactions. 309 

The type of precipitated secondary mineral can vary over the entire experimental period. In this 310 

study, two time periods were defined: from 0 to 15 months (short-term mineral evolution) and 311 

from 15 months to 15 years (long-term mineral evolution). In numerical simulations, the 312 

specification of each expected secondary mineral was defined to allow its precipitation after 313 

saturation. In the modelling process, attention was paid to minerals that were actually observed in 314 

the experiments, together with ones that might precipitate (i.e. with saturation index close to zero), 315 

in order to achieve more accurate results. Moreover, the list of secondary minerals being tracked 316 

during the modelling should reasonably embrace the range of chemical ions represented in the 317 

experiment. Finally, the stability range of realistic secondary phases being modelled should be 318 

coincident with the experimental conditions (e.g. especially temperature and pH). 319 

 320 

Several previous experimental studies have shown that when high-pH calcium-bearing cement 321 

leachate reacts with the host rock in the CDZ, the primary silicate dissolves, followed mostly by 322 

the precipitation of secondary CSH phases with different calcium-to-silicon ratios (Bateman et al. 323 

1999; Braney et al. 1993; Gaucher and Blanc 2006; Hodgkinson and Hughes 1999; Mäder et al. 324 

2006; Savage and Rochelle 1993). Where the system also includes aluminosilicate minerals 325 

(Equations 12 and 13) and potassium (from minerals or the cement leachate), then secondary 326 

phases of aluminium- and potassium-bearing minerals (C-[Al]-[K]-S-H) also precipitate (Braney 327 

et al. 1993; Savage et al. 1992). Carbonate minerals, especially dolomite, can also play a significant 328 

role in the precipitation of other, secondary carbonates (e.g., calcite, Equation 14) when reacting 329 



with cement porewater leachate (Braithwaite and Heath 2013; Poole and Sotiropoulos 1980). Their 330 

relatively fast dissolution reaction compared to silicate minerals can control fluid chemistry during 331 

the early stages of the reaction (Bérubé et al. 1990; Choquette et al. 1991). Modelling studies have 332 

also shown that the reaction time and the composition of the primary solution (e.g., pH) are the 333 

two dominant factors in controlling the precipitating phases. Those studies also indicate that over 334 

time, CSH gel will evolve into zeolite, feldspar and CSH minerals (Bateman et al. 1999; Braney 335 

et al. 1993; Fernández et al. 2010; Pfingsten et al. 2006; Savage et al. 1992; Savage and Rochelle 336 

1993; Soler and Mäder 2007). 337 𝑲𝑨𝒍𝑺𝒊𝟑𝑶𝟖 + 𝟑𝑶𝑯− + 𝟐𝑯𝟐𝑶 → 𝑨𝒍(𝑶𝑯)𝟒− + 𝟑𝑯𝑺𝒊𝑶𝟑−(𝒂𝒒) + 𝑲+(𝒂𝒒)       (12)   338 𝑯𝑺𝒊𝑶𝟑−(𝒂𝒒) + 𝑪𝒂𝟐+(𝒂𝒒) + 𝑯𝟐𝑶 → 𝑪 − 𝑺 − 𝑯𝒈𝒆𝒍                                             (13) 339 𝑴𝒈𝑪𝒂(𝑪𝑶𝟑)𝟐 + 𝟐𝑶𝑯− → 𝑴𝒈(𝑶𝑯)𝟐 + 𝑪𝒂𝑪𝑶𝟑 + 𝑪𝑶𝟑𝟐−(𝒂𝒒)                     (14) 340 

As the BVG rock sample was rich in dolomite, it was assumed that the dedolomitization process 341 

would result in an enormous number of magnesium and carbonate ions. This indicates that aqueous 342 

calcium ions can also be a driving force for the dissolution process of dolomite, as well as the fluid 343 

pH level. At the beginning of the experiments (from 0 to 15 months), there was a low concentration 344 

of calcium ions in the YNFP, which led to undersaturation with respect to calcite and its 345 

dissolution. However, in the ENFG fluid, the system had a high concentration of calcium ions, 346 

which consumed all the aqueous ions of carbonate (𝐶𝑂32−) to form the secondary calcite. Since 347 

the rock sample also included quartz and feldspar, the released magnesium ions were expected to 348 

react with both aqueous calcium and silica to form a secondary  (Ca)-Mg-(Al)-(K)-silicate and 349 

ettringite (In case sulphate ions were in the solution), as demonstrated in the literature (Derkowski 350 

et al. 2013; Galı́ et al. 2001; Garcia et al. 2020; Schwarzenbach et al. 2013; Techer et al. 2012; 351 

Tinseau et al. 2006; Xie et al. 2013). Studies have also confirmed the formation of talc, smectite 352 



(Mg-saponite), illite and brucite as secondary Mg-rich phases during the dedolomitization process 353 

(Chen et al. 2018; Moyce et al. 2014; Rochelle et al. 2016). Figure 3 shows the conceptual model 354 

for mineral evolution during the dissolution and precipitation cycle of BVG rock reaction with 355 

ENFG fluid. 356 

 357 

 358 

Figure 3: Conceptual model for minerals evolution during the dissolution and precipitation cycle of BVG reaction 359 
with ENFG. 360 

 361 

4. Results and discussion 362 

The reaction of BVG rock with ENFG was modelled over a simulated 15-year duration using the 363 

MKE approach. Changes in the concentration of Ca, Mg, Na, K, Al, Si, CO3 and pH, as measured 364 

from the experiment, were analysed in the modelling simulations, and the comparison is shown in 365 

Figures 4–8. As an inactive ion, the chloride concentration (Figure 4, Plot A) increased in the 366 

solution as a result of the evaporation process, in line with the experimental data. Furthermore, 367 

since none of the primary minerals in the original rock sample included sodium and the potential 368 

secondary phases did not significantly consume sodium, the increase in sodium concentration (Plot 369 

A) also appears to be mainly a result of the evaporation process. This indicates that the sodium ion 370 

is also a conservative species in this geochemical system. 371 

 372 



The dissolution process of quartz, which accounts for 41% of the BVG rock, released a significant 373 

amount of silicon into the highly alkaline solution in the first few months (Plot B). The availability 374 

of silicon ions along with the initial calcium concentration (plus calcium released from the 375 

dissolution of dolomite) then promoted the precipitation of secondary CSH and CASH phases, 376 

represented by a sharp drop in silicon concentration along with a decrease in calcium concentration 377 

(Plot C). The increase in potassium concentration (Plot D) was mostly linked to the evaporation 378 

plus the dissolution of k-feldspar and muscovite, which also released silicon and aluminium. This 379 

can be seen in the numerical results of Plot E, which show a small increase in aluminium 380 

concentration in the first few months. The concentration line then drops heavily and follows the 381 

experimental behaviour as a result of forming secondary aluminosilicate phases. The saturation 382 

index lines in Figure 5 show that k-feldspar and muscovite both start with a higher dissolution rate 383 

than quartz, which defines the small peak in aluminium concentration in the beginning before it 384 

drops down as secondary calcium silicates start to precipitate. The figure also shows that muscovite 385 

was always undersaturated, and thus would have continued to dissolve, providing a source of 386 

aluminium for secondary phases. Moreover, the precipitation rates for talc, CSH gel and 387 

tobermorite (CSH) were all high in the first few months of the reaction (Figure 7). This high 388 

precipitation was mirrored by a substantial drop in silicon, aluminium and calcium concentrations 389 

at almost the same time. Note that in Figure 7, the positive value is for the dissolving process, 390 

whereas, negative for the precipitation process. Both CSH gel and tobermorite precipitated initially 391 

and redissolved after 18 months, with a similar kinetic rate. Talc started to precipitate from the 392 

beginning of the experiment and reached a stable amount after around 18 months. The initial 393 

concentration of magnesium in the leachate, plus that released during dedolomitization, drove 394 

brucite precipitation in the high pH conditions and created a sink for Mg (Bérubé et al. 1990; 395 



Cheng 1986), which also consumed hydroxyl ions and reduced the pH value. This rapid drop in 396 

pH in the first few months (Figure 4, Plot H) is also reflected in Figure 6, which shows a higher 397 

precipitation rate of brucite in the same period. Subsequently, the drop in the pH value 398 

progressively continued, but at a slower rate. From Figure 4 (Plot F), it is also clear that the initial 399 

magnesium ions were consumed in the first few months before the dedolomitization process took 400 

control. The saturation index of dolomite (Figure 5) shows that it was undersaturated (dissolving) 401 

in the geochemical system, but with a much slower rate as the pH value went below 9. This agrees 402 

with literature information (Min and Mingshu 1993), which suggests that dedolomitization does 403 

not occur below pH 11. Despite that, dedolomitization still occurred in the geochemical system, 404 

but at a very slow rate. This is demonstrated by the high magnesium concentration (Evaporation 405 

can also play a part in this increase as well) at the end of the 15 years (Figure 4, Plot F), which was 406 

observed in the experiment as well (Moyce et al. 2014). The escalation of dedolomitization can be 407 

caused by the high concentration of Ca2+ in the ENFG, which promotes this process even at lower 408 

pH values. Dedolomitization provides calcium and aqueous 𝐶𝑂32−, which are removed effectively 409 

(Figure 4, Plot G) from the system by the precipitation of calcite (Bérubé et al. 1990). This can be 410 

seen in the saturation indices of calcite and brucite (Figure 6), which both precipitate in 411 

concurrence with the consumption of 𝐶𝑂32−. The extra amount of 𝐶𝑂32− in Equation 14 plus the 412 

amount released from the dissolution of calcite at later stages of the experiment is also reflected in 413 

Figure 4 (Plot G) which shows a small increase in (𝐶𝑂32−) concentration. Thus, to incorporate the 414 

slow dedolomitization process in the modelling, the specific dissolution rate of dolomite was 415 

lowered by two orders of magnitude. This compensates for the slower dolomitisation process 416 

below pH 11 but at the same time allows the process to take place, driven by the high concentration 417 

of calcium ions, especially at the early stage of the reaction. Another indication that supports the 418 



dedolomitization process is the high precipitation rate of Mg-silicate (talc and saponite-Mg), which 419 

was reflected by the higher dissolution rate of dolomite in the same period. Since brucite was close 420 

to saturation after the first few months (Figure 6), most of the released magnesium from the 421 

dedolomitization process was likely consumed during the formation of magnesium-silicate 422 

minerals, which is also recognised in other literature (Eglinton 1998; Glasser 2001). 423 

 424 

After the large drop in the pH value, tobermorite and CSH gel starts to dissolve; at that time, a 425 

substitution between aluminium and silicon ions takes place to produce more stable calcium 426 

aluminosilicate hydrate (Myers et al. 2015; Richardson 2014; Richardson et al. 1993). This 427 

secondary CASH phase can then bind with the magnesium from the dedolomitization and create 428 

Mg-aluminosilicate (Galı́ et al. 2001; Moyce et al. 2014). This phenomenon highlights the 429 

importance of the modelling procedure for this kind of complex long-term geochemical reaction, 430 

as it allows a better understanding of the potential chemical and physical reactions that occur in 431 

the geosphere. It can also allow the extension of the timescale from relatively short-duration lab 432 

tests to the long timescales of performance assessments. Additionally, it can reveal the type of 433 

dissolved or precipitated secondary minerals that can contribute effectively to the retardation of 434 

radionuclide migration. For example, zeolites would be useful secondary phases as they have a 435 

high sorption capability to the radionuclide. Their considerable surface area and ion exchange 436 

capacity could play a key role in retarding radionuclide migration. Unfortunately, no evidence of 437 

zeolite precipitation was found in any of the NSARP experiments (Moyce et al. 2014; Rochelle et 438 

al. 2016). A plausible explanation for this is the rapid removal of silicon and aluminium by CSH 439 

and CASH phases that could suppress the formation of zeolites as they may have slower kinetic 440 

precipitation. Even though the modelling results obtained from the geochemical analysis showed 441 



potential for mesolite, stilbite and scolecite precipitation (based on the temperature of the 442 

experiment), which all are part of the zeolite family (Figure 8; (Bucher and Stober 2010; Bucher 443 

and Weisenberger 2013; Fridriksson et al. 1999; Weisenberger and Selbekk 2009)). 444 

 445 

Even though those minerals did not precipitate in the experiment, this does not prove that the 446 

situation will be the same in the actual geosphere. The experimental design tried to mimic the 447 

actual environmental conditions as much as possible (rock type, temp, pH, etc.). However, there 448 

are still some variances, which can lead to different results. For example, as reported by (Adler et 449 

al. 1999), zeolite formation is preferred in the pore spaces in which leachate flux is minimal, and 450 

in these experiments the leachate: rock ratio was very high. The composition and nature of the 451 

rock type can also play a significant role, as it can affect the amount of CO2 released into the 452 

leachate (e.g., depending on dolomite percentage), which can buffer the formation of zeolites 453 

(Mullis et al. 1994; Weisenberger and Bucher 2010). Taken together, the findings reveal the 454 

potentially important role of dolomite in the geochemical system. Moreover, they provide valuable 455 

insight into specific geochemical processes alongside the usefulness of iterating between 456 

modelling and experimental results to achieve a better understanding of the system under study. 457 

 458 

 459 

 460 

 461 
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Figure 4: Modelled and experimental values for ions concentration and pH versus time. 
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Figure 5: Saturation indices of primary mineral versus time. 468 

 469 

 470 

  471 

Figure 6: Saturation indices of secondary phases versus time. 472 
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 474 

 475 

Figure 7: Kinetic rates for CSH gel, talc and tobermorite-11A versus time. 476 

 477 

 478 

 479 

  480 

Figure 8: Zeolites minerals saturation indices versus time. 481 
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5. Conclusion 483 

 484 

The construction of a cement-based, deep underground geological disposal facility for radioactive 485 

waste will result in an alkaline plume when groundwater equilibrates with minerals in the cement 486 

barrier. This will initiate a series of dissolution/precipitation reactions in the surrounding host rock, 487 

and consequent changes in physical, hydraulic, chemical and sorption properties long before any 488 

potential migration of radionuclides. It is useful to understand and to be able to predict these 489 

changes, as they are likely to influence the potential retardation of future radionuclide migration. 490 

This study modelled the mineralogical evolution and geochemical reactions of BVG rock in 491 

contact with ENFG. Importantly, the rock sample comprised a hydraulically-conductive dolomite-492 

rich fracture, and though dolomite is only a minor phase in the rock overall, it is a major phase in 493 

direct contact with current groundwater. Simulations were conducted using PHREEQC, and 494 

predictions compared with data from experiments lasting up to fifteen years. The results showed 495 

that: (1) secondary phases such as talc, brucite and Mg-aluminosilicate precipitated, driven by 496 

dedolomitization; (2) solution pH initially dropped quickly as a result of brucite precipitation; (3) 497 

although zeolites were predicted stable secondary phases, they were absent in the experiments, 498 

possibly as a consequence of factors such as slow reaction kinetics, high leachate-to-rock ratios or 499 

elevated CO2 concentrations. Overall, the modelling results of these long-term experiments 500 

indicate the important role of fluid-mineral reactions in controlling fluid chemistry and secondary 501 

phases, and so sufficient attention should be focused on the mineralogical composition of flowing 502 

features, as the minerals lining those can exert a critical influence on key geochemical reactions. 503 

 504 

 505 
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