216 research outputs found
Detection of VIM-1-producing Enterobacter cloacae and Salmonella enterica Serovars Infantis and Goldcoast at a breeding pig farm in Germany in 2017 and their molecular relationship to former VIM-1-producing S. Infantis Isolates in German livestock production
In 2011, VIM-1-producing Salmonella enterica serovar Infantis and Escherichia coli were isolated for the first time in four German livestock farms. In 2015/2016, highly related isolates were identified in German pig production. This raised the issue of potential reservoirs for these isolates, the relation of their mobile genetic elements, and potential links between the different affected farms/facilities. In a piglet-producing farm suspicious for being linked to some blaVIM-1 findings in Germany, fecal and environmental samples were examined for the presence of carbapenemase-producing Enterobacteriaceae and Salmonella spp. Newly discovered isolates were subjected to Illumina whole-genome sequencing (WGS) and S1 pulsed-field gel electrophoresis (PFGE) hybridization experiments. WGS data of these isolates were compared with those for the previously isolated VIM-1-producing Salmonella Infantis isolates from pigs and poultry. Among 103 samples, one Salmonella Goldcoast isolate, one Salmonella Infantis isolate, and one Enterobacter cloacae isolate carrying the blaVIM-1 gene were detected. Comparative WGS analysis revealed that the blaVIM-1 gene was part of a particular Tn21-like transposable element in all isolates. It was located on IncHI2 (ST1) plasmids of ∼290 to 300 kb with a backbone highly similar (98 to 100%) to that of reference pSE15-SA01028. SNP analysis revealed a close relationship of all VIM-1-positive S. Infantis isolates described since 2011. The findings of this study demonstrate that the occurrence of the blaVIM-1 gene in German livestock is restricted neither to a certain bacterial species nor to a certain Salmonella serovar but is linked to a particular Tn21-like transposable element located on transferable pSE15-SA01028-like IncHI2 (ST1) plasmids, being present in all of the investigated isolates from 2011 to 2017.
IMPORTANCE: Carbapenems are considered one of few remaining treatment options against multidrug-resistant Gram-negative pathogens in human clinical settings. The occurrence of carbapenemase-producing Enterobacteriaceae in livestock and food is a major public health concern. Particularly the occurrence of VIM-1-producing Salmonella Infantis in livestock farms is worrisome, as this zoonotic pathogen is one of the main causes for human salmonellosis in Europe. Investigations on the epidemiology of those carbapenemase-producing isolates and associated mobile genetic elements through an in-depth molecular characterization are indispensable to understand the transmission of carbapenemase-producing Enterobacteriaceae along the food chain and between different populations to develop strategies to prevent their further spread
Novel whole blood assay for phenotyping platelet reactivity in mice identifies ICAM-1 as a mediator of platelet-monocyte interaction
British Heart Foundation (PG/12/68/29779 and
PG/14/48/30916) and the Wellcome Trust (101604/Z/13/Z to SN and TW, and
098291/Z/12/Z to S.N)
Modeling of interventions for reducing external Enterobacteriaceae contamination of broiler carcasses during processing
This article presents a mathematical model for the Enterobacteriaceae count on the surface of broiler chicken during slaughter and how it may be affected by different processing technologies. The model is based on a model originally developed for Campylobacter and has been adapted for Enterobacteriaceae using a Bayesian updating approach and hitherto unpublished data gathered from German abattoirs. The slaughter process in the model consists of five stages: input, scalding, defeathering, evisceration, washing, and chilling.
The impact of various processing technologies along the broiler processing line on the Enterobacteriaceae count on the carcasses’ surface has been determined from literature data. The model is implemented in the software R and equipped with a graphical user interface which allows interactively to choose among different processing technologies for each stage along the processing line. Based on the choice of processing technologies the model estimates the Enterobacteriaceae count on the surface of each broiler chicken at each stage of processing. This result is then compared to a so-called baseline model which simulates a processing line with a fixed set of processing technologies.
The model calculations showed how even very effective removal of bacteria on the exterior of the carcass in a previous step will be undone by the cross-contamination with leaked feces, if feces contain high concentrations of bacteria
Survival of highly related ESBL- and pAmpC- producing Escherichia coli in broiler farms identified before and after cleaning and disinfection using cgMLST
Background
Broiler chickens are frequently colonized with Extended-Spectrum Beta-Lactamase- (ESBL-) and plasmid mediated AmpC Beta-Lactamase- (pAmpC-) producing Enterobacterales, and we are confronted with the potential spread of these resistant bacteria in the food chain, in the environment, and to humans. Research focused on identifying of transmission routes and investigating potential intervention measures against ESBL- and pAmpC- producing bacteria in the broiler production chain. However, few data are available on the effects of cleaning and disinfection (C&D) procedures in broiler stables on ESBL- and pAmpC- producing bacteria.
Results
We systematically investigated five broiler stables before and after C&D and identified potential ESBL- and pAmpC- colonization sites after C&D in the broiler stables, including the anteroom and the nearby surrounding environment of the broiler stables. Phenotypically resistant E. coli isolates grown on MacConkey agar with cefotaxime were further analyzed for their beta-lactam resistance genes and phylogenetic groups, as well as the relation of isolates from the investigated stables before and after C&D by whole genome sequencing. Survival of ESBL- and pAmpC- producing E. coli is highly likely at sites where C&D was not performed or where insufficient cleaning was performed prior to disinfection. For the first time, we showed highly related ESBL-/pAmpC- producing E. coli isolates detected before and after C&D in four of five broiler stables examined with cgMLST. Survival of resistant isolates in investigated broiler stables as well as transmission of resistant isolates from broiler stables to the anteroom and surrounding environment and between broiler farms was shown. In addition, enterococci (frequently utilized to detect fecal contamination and for C&D control) can be used as an indicator bacterium for the detection of ESBL-/pAmpC- E. coli after C&D.
Conclusion
We conclude that C&D can reduce ESBL-/pAmpC- producing E. coli in conventional broiler stables, but complete ESBL- and pAmpC- elimination does not seem to be possible in practice as several factors influence the C&D outcome (e.g. broiler stable condition, ESBL-/pAmpC- status prior to C&D, C&D procedures used, and biosecurity measures on the farm). A multifactorial approach, combining various hygiene- and management measures, is needed to reduce ESBL-/pAmpC- E. coli in broiler farms
Genetic but No Phenotypic Associations between Biocide Tolerance and Antibiotic Resistance in Escherichia coli from German Broiler Fattening Farms
Biocides are frequently applied as disinfectants in animal husbandry to prevent the transmission of drug-resistant bacteria and to control zoonotic diseases. Concerns have been raised, that their use may contribute to the selection and persistence of antimicrobial-resistant bacteria. Especially, extended-spectrum β-lactamase- and AmpC β-lactamase-producing Escherichia coli have become a global health threat. In our study, 29 ESBL-/AmpC-producing and 64 NON-ESBL-/AmpC-producing E.coli isolates from three German broiler fattening farms collected in 2016 following regular cleaning and disinfection were phylogenetically characterized by whole genome sequencing, analyzed for phylogenetic distribution of virulence-associated genes, and screened for determinants of and associations between biocide tolerance and antibiotic resistance. Of the 30 known and two unknown sequence types detected, ST117 and ST297 were the most common genotypes. These STs are recognized worldwide as pandemic lineages causing disease in humans and poultry. Virulence determinants associated with extraintestinal pathogenic E.coli showed variable phylogenetic distribution patterns. Isolates with reduced biocide susceptibility were rarely found on the tested farms. Nine isolates displayed elevated MICs and/or MBCs of formaldehyde, chlorocresol, peroxyacetic acid, or benzalkonium chloride. Antibiotic resistance to ampicillin, trimethoprim, and sulfamethoxazole was most prevalent. The majority of ESBL-/AmpC-producing isolates carried blaCTX-M (55%) or blaCMY-2 (24%) genes. Phenotypic biocide tolerance and antibiotic resistance were not interlinked. However, biocide and metal resistance determinants were found on mobile genetic elements together with antibiotic resistance genes raising concerns that biocides used in the food industry may lead to selection pressure for strains carrying acquired resistance determinants to different antimicrobials
Genetic diversity and pathogenic potential of Shiga toxin-producing Escherichia coli (STEC) derived from German flour
Shiga toxin-producing Escherichia coli (STEC) can cause severe human illness, which are frequently linked to the consumption of contaminated beef or dairy products. However, recent outbreaks associated with contaminated flour and undercooked dough in the United States and Canada, highlight the potential of plant based food as transmission routes for STEC. In Germany STEC has been isolated from flour, but no cases of illness have been linked to flour.
In this study, we characterized 123 STEC strains isolated from flour and flour products collected between 2015 and 2019 across Germany. In addition to determination of serotype and Shiga toxin subtype, whole genome sequencing (WGS) was used for isolates collected in 2018 to determine phylogenetic relationships, sequence type (ST), and virulence-associated genes (VAGs).
We found a high diversity of serotypes including those frequently associated with human illness and outbreaks, such as O157:H7 (stx2c/d, eae), O145:H28 (stx2a, eae), O146:H28 (stx2b), and O103:H2 (stx1a, eae). Serotypes O187:H28 (ST200, stx2g) and O154:H31 (ST1892, stx1d) were most prevalent, but are rarely linked to human cases. However, WGS analysis revealed that these strains, as well as, O156:H25 (ST300, stx1a) harbour high numbers of VAGs, including eae, nleB and est1a/sta1.
Although STEC-contaminated flour products have yet not been epidemiologically linked to human clinical cases in Germany, this study revealed that flour can serve as a vector for STEC strains with a high pathogenic potential. Further investigation is needed to determine the sources of STEC contamination in flour and flour products particularly in regards to these rare serotypes.Peer Reviewe
Direct identification and molecular characterization of zoonotic hazards in raw milk by metagenomics using brucella as a model pathogen
Metagenomics is a valuable diagnostic tool for enhancing microbial food safety because (i) it enables the untargeted detection of pathogens, (ii) it is fast since primary isolation of micro-organisms is not required, and (iii) it has high discriminatory power allowing for a detailed molecular characterization of pathogens. For shotgun metagenomics, total nucleic acids (NAs) are isolated from complex samples such as foodstuff. Along with microbial NAs, high amounts of matrix NAs are extracted that might outcompete microbial NAs during next-generation sequencing and compromise sensitivity for the detection of low abundance micro-organisms. Sensitive laboratory methods are indispensable for detecting highly pathogenic foodborne bacteria like Brucella spp., because a low infectious dose is sufficient to cause human disease through the consumption of contaminated dairy or meat products. In our study, we applied shotgun metagenomic sequencing for the identification and characterization of Brucella spp. in artificially and naturally contaminated raw milk from various ruminant species. With the depletion of eukaryotic cells prior to DNA extraction, Brucella was detectable at 10 bacterial cells ml−1, while at the same time microbiological culture and isolation of the fastidious bacteria commonly failed. Moreover, we were able to retrieve the genotype of a Brucella isolate from a metagenomic dataset, indicating the potential of metagenomics for outbreak investigations using SNPs and core-genome multilocus sequence typing (cgMLST). To improve diagnostic applications, we developed a new bioinformatics approach for strain prediction based on SNPs to identify the correct species and define a certain strain with only low numbers of genus-specific reads per sample. This pipeline turned out to be more sensitive and specific than Mash Screen. In raw milk samples, we simultaneously detected numerous other zoonotic pathogens, antimicrobial resistance genes and virulence factors. Our study showed that metagenomics is a highly sensitive tool for biological risk assessment of foodstuffs, particularly when pathogen isolation is hazardous or challenging
ESBL-Producing Klebsiella pneumoniae in the Broiler Production Chain and the First Description of ST3128
ESBL-producing Klebsiella pneumoniae (K. pneumoniae) represent an increasing problem both in human and veterinary medicine. As SHV-2 - encoding K. pneumoniae were recently detected in the broiler production we were interested in investigating a possible transmission along the broiler production chain and furthermore, in evaluating their possible impact on human health. Therefore, 41 ESBL-producing K. pneumoniae originating from a parent flock, from the hatcherys' environment during the hatching of that parent flocks' chickens, and from an associated fattening flock were investigated on an Illumina Miseq. Whole genome sequences were analyzed concerning their MLST-type, cgMLST-type, genotypic and phenotypic resistance, plasmid profiles and virulence genes. Irrespective of the origin of isolation all investigated isolates were multi-drug resistant, harbored the same ESBL-gene blaSHV−2, shared the same sequence type (ST3128) and displayed 100% similarity in core genome multilocus sequence typing (cgMLST). In addition, in silico plasmid typing found several Inc/Rep types associated with ESBL-plasmids. Summarizing, identical clones of SHV-2—producing K. pneumoniae were detected in different stages of the industrial broiler production in one out of seven investigated broiler chains. This proves the possibility of pseudo-vertical transmission of multi-resistant human pathogens from parent flocks to hatcheries and fattening flocks. Furthermore, the importance of cross-contamination along the production chain was shown. Although the ESBL-producing K. pneumoniae clone detected here in the broiler production has not been associated with clinical settings so far, our findings present a potential public health threat
Impact of On-Farm Interventions against CTX-Resistant Escherichia coli on the Contamination of Carcasses before and during an Experimental Slaughter
Cefotaxime (CTX)-resistant Enterobacteriaceae are still an ongoing challenge in human and veterinary health. High prevalence of these resistant bacteria is detected in broiler chickens and the prevention of their dissemination along the production pyramid is of major concern. The impact of certain on-farm interventions on the external bacterial contamination of broiler chickens, as well as their influence on single processing steps and (cross-) contamination, have not yet been evaluated. Therefore, we investigated breast skin swab samples of broiler chickens before and during slaughter at an experimental slaughter facility. Broiler chickens were previously challenged with CTX-resistant Escherichia coli strains in a seeder-bird model and subjected to none (control group (CG)) or four different on-farm interventions: drinking water supplementation based on organic acids (DW), slow growing breed Rowan × Ranger (RR), reduced stocking density (25 kg/sqm) and competitive exclusion with Enterobacteriales strain IHIT36098(CE). Chickens of RR, 25 kg/sqm, and CE showed significant reductions of the external contamination compared to CG. The evaluation of a visual scoring system indicated that wet and dirty broiler chickens are more likely a vehicle for the dissemination of CTX-resistant and total Enterobacteriaceae into the slaughterhouses and contribute to higher rates of (cross-) contamination during processing
Management decisions in organization management model
This article focuses on the problem of improving management decision-making in the modern organization. Despite the existence of a large number of publications devoted to this subject, the relevance of the problem of managerial decision-making in modern management is very important. The article contains an analysis of classifications management decisions and proposes decomposition method to a better understanding of management decision, to expand the scope of its application, to define the degree of responsibility for decision-making, to improve efficiency of management decisions. And thus, the decomposition of management decisions acts as one of the foundations development of methodological approaches to the formation of an information for management solutions.Данная статья посвящена проблеме совершенствования процесса принятия управленческих решений в современных условиях на предприятии. Несмотря на существование большого количества публикаций, затрагивающих данную тему, вопрос об актуальности проблемы принятия управленческих решений в современном менеджменте остается весьма значимым. В статье автором проводится анализ классификационных признаков управленческих решений, раскрывается сам процесс принятия управленческих решений в организации, и предлагается метод декомпозиции, который позволит лучше понять сущность управленческого решения, расширить область его применения, обозначить степень ответственности за принятие решений, повысить эффективность принимаемых управленческих решений. И таким образом, декомпозиция управленческих решений выступает в роли одной из основ разработки методологических подходов к формированию информационной обеспечивающей управленческих решений
- …
