18 research outputs found

    Dépôt de couches minces nanocomposites par nébulisation d'une suspension colloïdale dans une décharge de Townsend à la pression atmosphérique = Nebulization of colloidal suspensions for the deposition of nanocomposite thin film by atmos-pheric pressure Townsend discharge

    Full text link
    Ce travail de thèse porte sur le développement de nouvelles couches minces nanocomposites par plasma froid à la pression atmosphérique. L’objectif principal est d’améliorer la compréhension des mécanismes physico-chimiques régissant ce procédé de synthèse. La stratégie adoptée est basée sur l’injection via un aérosol d’une suspension colloïdale de nanoparticules d’oxyde métallique dans une décharge à barrière diélectrique opérant en atmosphère d’azote (décharge de Townsend). Dans un premier temps, la synthèse est réalisée de manière séquentielle, la fabrication d’une matrice inorganique de silice (SiO2) étant séparée du dépôt des nanoparticules (TiO2). Ensuite, les couches nanocomposites sont obtenues par un procédé en une seule étape à travers l’injection simultanée dans la décharge des nanoparticules et d’un précurseur polymérisable organosiliciée (HMDSO). Les travaux présentés dans ce manuscrit se divisent en quatre grandes parties : tout d’abord le procédé de fabrication des nanoparticules est présenté, et une étude de leur dispersion dans divers solvants chimiques est réalisée. Puis la deuxième partie s’intéresse à l’étape de nébulisation de la suspension colloïdale, à l’analyse des distributions de taille des objets injectés et à l’étude de leur transport sans plasma. En particulier, une étude de l'influence des principales forces agissant sur leur transport est réalisée. Ces résultats permettent ensuite d’évaluer l’impact de la décharge sur le transport, et sur la réalisation des couches minces nanocomposites. Finalement, l’analyse des propriétés obtenues pour ces couches minces sur des substrats de bois est présentée dans une dernière partie.This PhD work is focused on the development of a new generation of nanocomposite thin films using cold plasma at atmospheric pressure. The main objective is to improve the understanding of the mechanisms involved in this process. The strategy is based on the injection of a metal oxide nanoparticles suspension in a dielectric barrier discharge operating in nitrogen (Townsend discharge). At first, the nanocomposite thin film is deposited sequentially: the fabrication of the inorganic matrix of silica (SiO2) is separated from the collection of the nanoparticles (TiO2). Then, the nanocomposite layers are obtained by a one-step process using a direct injection inside the discharge of nanoparticles dispersed in a polymerizable organosilicon precursor (HMDSO). This manuscript is divided into four major parts: first, the synthesis of the nanoparticles and the study of their dispersion in different solvents are presented. Then, in the second part we focus on the atomization of the colloidal suspension, on the analysis of the size distributions of the injected objects and on the study of their transport towards the discharge area. These results are then used to assess the influence of the discharge on the transport and the quality of deposited nanocomposite thin films. Finally, the thin films properties are investigated when depositing on wood substrates

    Use of 3D printed connectors to redesign full face snorkeling masks in the COVID-19 era: a preliminary technical case-study

    Get PDF
    The COVID-19 pandemic resulted in severe shortages of personal protection equipment and non-invasive ventilation devices. As traditional supply chains could not meet up with the demand, makeshift solutions were developed and locally manufactured by rapid prototyping networks. Among the different global initiatives, retrofitting of full-face snorkeling masks for Non-Invasive-Ventilation (NIV) applications seems the most challenging. This article provides a systematic overview of rapid prototyped - 3D printed - designs that enable attachment of medical equipment to snorkeling masks, highlighting potential and challenges in additive manufacturing. The different NIV connector designs are compared on low-cost 3D fabrication time and costs, which allows a rapid assessment of developed connectors for health care workers in urgent need of retrofitting snorkeling masks for NIV purposes. Challenges and safety issues of the rapid prototyping approach for healthcare applications during the pandemic are discussed as well. When critical parameters such as the final product cost, geographical availability of the feedstock and the 3D printers and the medical efficiency of the rapid prototyped products are well considered before deploying decentralized 3D printing as manufacturing method, this rapid prototyping strategy contributed to reduce personal protective equipment and NIV shortages during the first wave of the COVID-19 pandemic. It is also concluded that it is crucial to carefully optimize material and printer parameter settings to realize best fitting and airtight connector-mask connections, which is heavily depending on the chosen feedstock and type of printer

    Atmospheric pressure townsend discharges as a promising tool for the one‐step deposition of antifogging coatings from N2O/TMCTS mixtures

    Get PDF
    The need to ensuring the “see‐through” property of transparent materials when exposed to sudden temperature changes or very humid conditions has encouraged the development of antifogging strategies, such as the deposition of (super)hydrophilic coatings. However, despite the effectiveness of these coatings in combating the effects of fogging, most of the coating techniques explored to date are typically time‐consuming and environment‐unfriendly. Bearing this in mind, we demonstrate that the application of dielectric barrier discharges operated at atmospheric pressure proves to be successful in preparing antifogging coatings on glass samples from 1,3,5,7‐tetramethylcyclotetrasiloxane (TMCTS) and nitrous oxide (N2O). The antifogging performance of the coatings was found to be governed by the [N2O]/[TMCTS] ratio and not by the [N2O] + [TMCTS] sum. Coatings prepared under a [N2O]/[TMCTS] = 30 were superhydrophilic (water contact angles ≈ 5°–10°) due to surface silanol groups and endowed glass samples with a superior antifogging property, as revealed by the ASTM F 659‐06 test. In contrast, because of the lesser hydrophilicity (water contact angles ≈ 60°), coatings prepared under a [N2O]/[TMCTS] = 10 did not endow glass samples with antifogging property. Regardless of the deposition conditions, the plasma‐deposited coatings displayed crack‐free smooth surfaces (Rrms = 2−4 nm)

    Nebulization of colloidal suspensions for the deposition of nanocomposite thin film by atmospheric pressure townsend discharge

    No full text
    Ce travail de thèse porte sur le développement de nouvelles couches minces nanocomposites par plasma froid à la pression atmosphérique. L'objectif principal est d'améliorer la compréhension des mécanismes physico-chimiques régissant ce procédé de synthèse. La stratégie adoptée est basée sur l'injection via un aérosol d'une suspension colloïdale de nanoparticules d'oxyde métallique dans une décharge à barrière diélectrique opérant en atmosphère d'azote (décharge de Townsend). Dans un premier temps, la synthèse est réalisée de manière séquentielle, la fabrication d'une matrice inorganique de silice (SiO2) étant séparée du dépôt des nanoparticules (TiO2). Ensuite, les couches nanocomposites sont obtenues par un procédé en une seule étape à travers l'injection simultanée dans la décharge des nanoparticules et d'un précurseur polymérisable organosiliciée (HMDSO). Les travaux présentés dans ce manuscrit se divisent en quatre grandes parties : tout d'abord le procédé de fabrication des nanoparticules est présenté, et une étude de leur dispersion dans divers solvants chimiques est réalisée. Puis la deuxième partie s'intéresse à l'étape de nébulisation de la suspension colloïdale, à l'analyse des distributions de taille des objets injectés et à l'étude de leur transport sans plasma. En particulier, une étude de l'influence des principales forces agissant sur leur transport est réalisée. Ces résultats permettent ensuite d'évaluer l'impact de la décharge sur le transport, et sur la réalisation des couches minces nanocomposites. Finalement, l'analyse des propriétés obtenues pour ces couches minces sur des substrats de bois est présentée dans une dernière partie.This PhD work is focused on the development of a new generation of nanocomposite thin films using cold plasma at atmospheric pressure. The main objective is to improve the understanding of the mechanisms involved in this process.The strategy is based on the injection of a metal oxide nanoparticles suspension in a dielectric barrier discharge operating in nitrogen (Townsend discharge). At first, the nanocomposite thin film is deposited sequentially: the fabrication of the inorganic matrix of silica (SiO2) is separated from the collection of the nanoparticles (TiO2). Then, the nanocomposite layers are obtained by a one-step process using a direct injection inside the discharge of nanoparticles dispersed in a polymerizable organosilicon precursor (HMDSO). This manuscript is divided into four major parts: first, the synthesis of the nanoparticles and the study of their dispersion in different solvents are presented. Then, in the second part we focus on the atomization of the colloidal suspension, on the analysis of the size distributions of the injected objects and on the study of their transport towards the discharge area. These results are then used to assess the influence of the discharge on the transport and the quality of deposited nanocomposite thin films. Finally, the thin films properties are investigated when depositing on wood substrates

    Dépôt de couches minces nanocomposites par nébulisation d'une suspension colloïdale dans une décharge de Townsend à la pression atmosphérique

    Get PDF
    This PhD work is focused on the development of a new generation of nanocomposite thin films using cold plasma at atmospheric pressure. The main objective is to improve the understanding of the mechanisms involved in this process.The strategy is based on the injection of a metal oxide nanoparticles suspension in a dielectric barrier discharge operating in nitrogen (Townsend discharge). At first, the nanocomposite thin film is deposited sequentially: the fabrication of the inorganic matrix of silica (SiO2) is separated from the collection of the nanoparticles (TiO2). Then, the nanocomposite layers are obtained by a one-step process using a direct injection inside the discharge of nanoparticles dispersed in a polymerizable organosilicon precursor (HMDSO). This manuscript is divided into four major parts: first, the synthesis of the nanoparticles and the study of their dispersion in different solvents are presented. Then, in the second part we focus on the atomization of the colloidal suspension, on the analysis of the size distributions of the injected objects and on the study of their transport towards the discharge area. These results are then used to assess the influence of the discharge on the transport and the quality of deposited nanocomposite thin films. Finally, the thin films properties are investigated when depositing on wood substrates.Ce travail de thèse porte sur le développement de nouvelles couches minces nanocomposites par plasma froid à la pression atmosphérique. L'objectif principal est d'améliorer la compréhension des mécanismes physico-chimiques régissant ce procédé de synthèse. La stratégie adoptée est basée sur l'injection via un aérosol d'une suspension colloïdale de nanoparticules d'oxyde métallique dans une décharge à barrière diélectrique opérant en atmosphère d'azote (décharge de Townsend). Dans un premier temps, la synthèse est réalisée de manière séquentielle, la fabrication d'une matrice inorganique de silice (SiO2) étant séparée du dépôt des nanoparticules (TiO2). Ensuite, les couches nanocomposites sont obtenues par un procédé en une seule étape à travers l'injection simultanée dans la décharge des nanoparticules et d'un précurseur polymérisable organosiliciée (HMDSO). Les travaux présentés dans ce manuscrit se divisent en quatre grandes parties : tout d'abord le procédé de fabrication des nanoparticules est présenté, et une étude de leur dispersion dans divers solvants chimiques est réalisée. Puis la deuxième partie s'intéresse à l'étape de nébulisation de la suspension colloïdale, à l'analyse des distributions de taille des objets injectés et à l'étude de leur transport sans plasma. En particulier, une étude de l'influence des principales forces agissant sur leur transport est réalisée. Ces résultats permettent ensuite d'évaluer l'impact de la décharge sur le transport, et sur la réalisation des couches minces nanocomposites. Finalement, l'analyse des propriétés obtenues pour ces couches minces sur des substrats de bois est présentée dans une dernière partie

    Development of Organosilicon-Based Superhydrophobic Coatings through Atmospheric Pressure Plasma Polymerization of HMDSO in Nitrogen Plasma

    No full text
    Water-repellent surfaces, often referred to as superhydrophobic surfaces, have found numerous potential applications in several industries. However, the synthesis of stable superhydrophobic surfaces through economical and practical processes remains a challenge. In the present work, we report on the development of an organosilicon-based superhydrophobic coating using an atmospheric-pressure plasma jet with an emphasis on precursor fragmentation dynamics as a function of power and precursor flow rate. The plasma jet is initially modified with a quartz tube to limit the diffusion of oxygen from the ambient air into the discharge zone. Then, superhydrophobic coatings are developed on a pre-treated microporous aluminum-6061 substrate through plasma polymerization of HMDSO in the confined atmospheric pressure plasma jet operating in nitrogen plasma. All surfaces presented here are superhydrophobic with a static contact angle higher than 150° and contact angle hysteresis lower than 6°. It is shown that increasing the plasma power leads to a higher oxide content in the coating, which can be correlated to higher precursor fragmentation, thus reducing the hydrophobic behavior of the surface. Furthermore, increasing the precursor flow rate led to higher deposition and lower precursor fragmentation, leading to a more organic coating compared to other cases

    Beyond microelectronics with 1,3,5,7-tetramethylcyclotetrasiloxane : a promising molecule for anti-fogging coatings

    No full text
    Over the past few years, a growing number of studies have focused on designing coatings for use in applications dealing with the fogging phenomenon such as endoscopes, automobile side view mirrors, and protective goggles. However, because of the long manufacturing times, the implementation on an industrial scale of most of the coating techniques used thus far is still a pending issue. Bearing this in mind, we report on the use of atmospheric pressure dielectric barrier discharges (AP-DBDs) operated in the presence of nitrous oxide (N2O) and 1,3,5,7-tetramethylcyclotetrasiloxane (TMCTS), as a reliable coating strategy for the one-step fabrication of anti-fogging glass. An increase in either the [N2O]/[TMCTS] ratio or the dissipated power resulted in coatings with such hydrophilic groups on the surface as Si–OH, C–O, and OC–O; and a structure similar to that of SiO2. Because of their “water-loving” characteristics (WCA < 40°), coatings deposited under a [N2O]/[TMCTS] ratio ≥ 30 and a dissipated power ≥ 0.25 W cm−2 conferred a remarkable anti-fogging performance to glass samples when placed over water at 80 °C. After 30 s of exposure to water vapor at 50 °C (ASTM F 659-06), the coated glasses exhibited a light transmittance greater than that of the uncoated glass (90% vs. 55%). These results illustrate how by controlling the dissipated power and the [N2O]/[TMCTS] ratio in the plasma anti-fogging glass can readily be fabricated

    Response surface methodology as a predictive tool for the fabrication of coatings with optimal anti-fogging performance

    No full text
    In this study, response surface methodology was applied to optimize the anti-fogging performance of coatings deposited on commercial glass samples from 1,3,5,7-tetramethylcyclotetrasiloxane (TMCTS)/N2O mixtures by atmospheric pressure plasma enhanced chemical vapor deposition. The effect of the dissipated power (DP), [N2O]/[TMCTS] ratio, and sample scroll speed on the anti-fogging performance was investigated by means of a Box-Behnken experimental design. The regression model relating transmittance of the coated glasses to these deposition parameters revealed that the anti-fogging performance strongly depends on the second-order interaction of the dissipated power and [N2O]/[TMCTS] ratio (i.e., DP × [N2O]/[TMCTS]). Contour plots showed that the dissipated power required to prepare optimal anti-fogging coatings should be of at least 0,7, 0,5 or 0,4 W cm−2, if the [N2O]/[TMCTS] ratio in the plasma is 20, 30, or 40, respectively. When placed over water at 50°C, the coated glass samples allowed 80% (or more) of 590-nm light to pass through, thus meeting the minimal anti-fogging requirement for alpine skier goggles and faceshields. Despite not having a significant impact on the anti-fogging performance, the sample scroll speed is key to fabricating coatings with the desired thickness during in-line manufacturing

    Overview of the User Experience for Snorkeling Mask Designs during the COVID-19 Pandemic

    No full text
    During the first wave of the COVID-19 pandemic, industries and academic institutes have collaborated to resolve the worldwide medical supply shortage issues. Innovative designs of 3D-printed items were proposed and developed by the maker community as a temporary solution to address the lack of personal protective equipment. An overview of global ongoing and past initiatives during the COVID-19 pandemic along with their challenges on retrofitting full-face snorkeling masks for healthcare applications such as splash-proof face shields, respirator masks and non-invasive ventilation systems are reported in this contribution. This study reviews these global initiatives and challenges. From our analysis, the present situation highlights the need to build solid networks between healthcare institutes and the different rapid prototyping initiatives. A clear feedback system needs to be implemented to facilitate effective collaboration between engineering (maker) and healthcare teams, to optimize the available human resources, and to achieve adequate product developments responding to the needs of healthcare workers
    corecore