1,944 research outputs found

    Visual Learning In The Perception Of Texture: Simple And Contingent Aftereffects Of Texture Density

    Get PDF
    Novel results elucidating the magnitude, binocularity and retinotopicity of aftereffects of visual texture density adaptation are reported as is a new contingent aftereffect of texture density which suggests that the perception of visual texture density is quite malleable. Texture aftereffects contingent upon orientation, color and temporal sequence are discussed. A fourth effect is demonstrated in which auditory contingencies are shown to produce a different kind of visual distortion. The merits and limitations of error-correction and classical conditioning theories of contingent adaptation are reviewed. It is argued that a third kind of theory which emphasizes coding efficiency and informational considerations merits close attention. It is proposed that malleability in the registration of texture information can be understood as part of the functional adaptability of perception

    Applications of computer-graphics animation for motion-perception research

    Get PDF
    The advantages and limitations of using computer animated stimuli in studying motion perception are presented and discussed. Most current programs of motion perception research could not be pursued without the use of computer graphics animation. Computer generated displays afford latitudes of freedom and control that are almost impossible to attain through conventional methods. There are, however, limitations to this presentational medium. At present, computer generated displays present simplified approximations of the dynamics in natural events. Very little is known about how the differences between natural events and computer simulations influence perceptual processing. In practice, the differences are assumed to be irrelevant to the questions under study, and that findings with computer generated stimuli will generalize to natural events

    Social Support and the Perception of Geographical Slant.

    Get PDF
    The visual perception of geographical slant is influenced by physiological resources, such as physical fitness, age, and being physically refreshed. In two studies we tested whether a psychosocial resource, social support, can also affect the visual perception of slants. Participants accompanied by a friend estimated a hill to be less steep when compared to participants who were alone (Study 1). Similarly, participants who thought of a supportive friend during an imagery task saw a hill as less steep than participants who either thought of a neutral person or a disliked person (Study 2). In both studies, the effects of social relationships on visual perception appear to be mediated by relationship quality (i.e., relationship duration, interpersonal closeness, warmth). Artifacts such as mood, social desirability, and social facilitation did not account for these effects. This research demonstrates that an interpersonal phenomenon, social support, can influence visual perception

    Social support and the perception of geographical slant

    Full text link
    The visual perception of geographical slant is influenced by physiological resources, such as physical fitness, age, and being physically refreshed. In two studies we tested whether a psychosocial resource, social support, can also affect the visual perception of slants. Participants accompanied by a friend estimated a hill to be less steep when compared to participants who were alone (Study 1). Similarly, participants who thought of a supportive friend during an imagery task saw a hill as less steep than participants who either thought of a neutral person or a disliked person (Study 2). In both studies, the effects of social relationships on visual perception appear to be mediated by relationship quality (i.e., relationship duration, interpersonal closeness, warmth). Artifacts such as mood, social desirability, and social facilitation did not account for these effects. This research demonstrates that an interpersonal phenomenon, social support, can influence visual perception

    Temporal trends and transport within and around the Antarctic polar vortex during the formation of the 1987 Antarctic ozone hole

    Get PDF
    During AAOE in 1987 an ER-2 high altitude aircraft made twelve flights out of Punta Arenas, Chile (53 S, 71 W) into the Antarctic polar vortex. The aircraft was fitted with fast response instruments for in situ measurements of many trace species including O3, ClO, BrO, NO sub y, NO, H2O, and N2O. Grab samples of long-lived tracers were also taken and a scanning microwave radiometer measured temperatures above and below the aircraft. Temperature, pressure, and wind measurements were also made on the flight tracks. Most of these flights were flown to 72 S, at a constant potential temperature, followed by a dip to a lower altitude and again assuming a sometimes different potential temperature for the return leg. The potential temperature chosen was 425 K (17 to 18 km) on 12 of the flight legs, and 5 of the flight legs were flown at 450 K (18 to 19 km). The remaining 7 legs of the 12 flights were not flown on constant potential temperature surfaces. Tracer data have been analyzed for temporal trends. Data from the ascents out of Punta Arenas, the constant potential temperature flight legs, and the dips within the vortex are used to compare tracer values inside and outside the vortex, both with respect to constant potential temperature and constant N2O. The time trend during the one-month period of August 23 through September 22, 1987, shows that ozone decreased by 50 percent or more at altitudes form 15 to 19 km. This trend is evident whether analyzed with respect to constant potential temperature or constant N2O. The trend analysis for ozone outside the vortex shows no downward trend during this period. The analysis for N2O at a constant potential temperature indicates no significant trend either inside or outside the vortex; however, a decrease in N2O with an increase in latitude is evident

    Detailed Analysis of Nearby Bulgelike Dwarf Stars II. Lithium Abundances

    Get PDF
    Li abundances are derived for a sample of bulgelike stars with isochronal ages of 10-11 Gyr. These stars have orbits with pericentric distances, Rp, as small as 2-3 kpc and Zmax < 1 kpc. The sample comprises G and K dwarf stars in the metallicity range -0.80<[Fe/H]< +0.40. Few data of Li abundances in old turn-off stars (> 4.5 Gyr) within the present metallicity range are available. M67 (4.7 Gyr) and NGC 188 (6 Gyr) are the oldest studied metal-rich open clusters with late-type stars. Li abundances have also been studied for few samples of old metal-rich field stars. In the present work a high dispersion in Li abundances is found for bulgelike stars for all the metallicity range, comparable with values in M67. The role of metallicity and age on a Li depletion pattern is discussed. The possible connection between Li depletion and oxygen abundance due to atmospheric opacity effects is investigated.Comment: 9 pages, 7 figure

    Affective stimulus properties influence size perception and the Ebbinghaus illusion

    Get PDF
    In the New Look literature of the 1950s, it has been suggested that size judgments are dependent on the affective content of stimuli. This suggestion, however, has been ‘discredited’ due to contradictory findings and methodological problems. In the present study, we revisited this forgotten issue in two experiments. The first experiment investigated the influence of affective content on size perception by examining judgments of the size of target circles with and without affectively loaded (i.e., positive, neutral, and negative) pictures. Circles with a picture were estimated to be smaller than circles without a picture, and circles with a negative picture were estimated to be larger than circles with a positive or a neutral picture confirming the suggestion from the 1950s that size perception is influenced by affective content, an effect notably confined to negatively loaded stimuli. In a second experiment, we examined whether affective content influenced the Ebbinghaus illusion. Participants judged the size of a target circle whereby target and flanker circles differed in affective loading. The results replicated the first experiment. Additionally, the Ebbinghaus illusion was shown to be weakest for a negatively loaded target with positively loaded and blank flankers. A plausible explanation for both sets of experimental findings is that negatively loaded stimuli are more attention demanding than positively loaded or neutral stimuli
    corecore