30 research outputs found

    Severe lower respiratory tract infection in infants and toddlers from a non-affluent population: viral etiology and co-detection as risk factors

    Get PDF
    Abstract\ud \ud \ud \ud Background\ud \ud Lower respiratory tract infection (LRTI) is a major cause of pediatric morbidity and mortality, especially among non-affluent communities. In this study we determine the impact of respiratory viruses and how viral co-detections/infections can affect clinical LRTI severity in children in a hospital setting.\ud \ud \ud \ud Methods\ud \ud Patients younger than 3 years of age admitted to a tertiary hospital in Brazil during the months of high prevalence of respiratory viruses had samples collected from nasopharyngeal aspiration. These samples were tested for 13 different respiratory viruses through real-time PCR (rt-PCR). Patients were followed during hospitalization, and clinical data and population characteristics were collected during that period and at discharge to evaluate severity markers, especially length of hospital stay and oxygen use. Univariate regression analyses identified potential risk factors and multivariate logistic regressions were used to determine the impact of specific viral detections as well as viral co-detections in relation to clinical outcomes.\ud \ud \ud \ud Results\ud \ud We analyzed 260 episodes of LRTI with a viral detection rate of 85% (n = 222). Co-detection was observed in 65% of all virus-positive episodes. The most prevalent virus was Respiratory Syncytial Virus (RSV) (54%), followed by Human Metapneumovirus (hMPV) (32%) and Human Rhinovirus (HRV) (21%). In the multivariate models, infants with co-detection of HRV + RSV stayed 4.5 extra days (p = 0.004), when compared to infants without the co-detection. The same trends were observed for the outcome of days of supplemental oxygen use.\ud \ud \ud \ud Conclusions\ud \ud Although RSV remains as the main cause of LRTI in infants our study indicates an increase in the length of hospital stay and oxygen use in infants with HRV detected by RT-PCR compared to those without HRV. Moreover, one can speculate that when HRV is detected simultaneously with RSV there is an additive effect that may be reflected in more severe clinical outcome. Also, our study identified a significant number of children infected by recently identified viruses, such as hMPV and Human Bocavirus (HBov), and this is a novel finding for poor communities from developing countries.This study was supported by Abbott Laboratórios do Brasil Ltda (academic grant), from an unrestricted investigator-generated proposal

    Detection of Human Bocavirus mRNA in Respiratory Secretions Correlates with High Viral Load and Concurrent Diarrhea

    Get PDF
    Human bocavirus (HBoV) is a parvovirus recently identified in association with acute respiratory infections (ARI). Despite its worldwide occurrence, little is known on the pathogenesis of HBoV infections. In addition, few systematic studies of HBoV in ARI have been conducted in Latin America. Therefore, in order to test whether active viral replication of human bocavirus is associated with respiratory diseases and to understand the clinical impact of this virus in patients with these diseases, we performed a 3-year retrospective hospital-based study of HBoV in outpatients and inpatients with symptoms of Acute Respiratory Infections (ARI) in Brazil. Nasopharyngeal aspirates (NPAs) from 1015 patients with respiratory symptoms were tested for HBoV DNA by PCR. All samples positive for HBoV were tested by PCR for all other respiratory viruses, had HBoV viral loads determined by quantitative real time PCR and, when possible, were tested by RT-PCR for HBoV VP1 mRNA, as evidence of active viral replication. HBoV was detected in 4.8% of patients, with annual rates of 10.0%, 3.0% and 3.0% in 2005, 2006 and 2007, respectively. The range of respiratory symptoms was similar between HBoV-positive and HBoV-negative ARI patients. However, a higher rate of diarrhea was observed in HBoV-positive patients. High HBoV viral loads (>108 copies/mL) and diarrhea were significantly more frequent in patients with exclusive infection by HBoV and in patients with detection of HBoV VP1 mRNA than in patients with viral co-infection, detected in 72.9% of patients with HBoV. In summary, our data demonstrated that active HBoV replication was detected in a small percentage of patients with ARI and was correlated with concurrent diarrhea and lack of other viral co-infections

    Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil

    Get PDF
    Cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in Manaus, Brazil, resurged in late 2020 despite previously high levels of infection. Genome sequencing of viruses sampled in Manaus between November 2020 and January 2021 revealed the emergence and circulation of a novel SARS-CoV-2 variant of concern. Lineage P.1 acquired 17 mutations, including a trio in the spike protein (K417T, E484K, and N501Y) associated with increased binding to the human ACE2 (angiotensin-converting enzyme 2) receptor. Molecular clock analysis shows that P.1 emergence occurred around mid-November 2020 and was preceded by a period of faster molecular evolution. Using a two-category dynamical model that integrates genomic and mortality data, we estimate that P.1 may be 1.7- to 2.4-fold more transmissible and that previous (non-P.1) infection provides 54 to 79% of the protection against infection with P.1 that it provides against non-P.1 lineages. Enhanced global genomic surveillance of variants of concern, which may exhibit increased transmissibility and/or immune evasion, is critical to accelerate pandemic responsiveness

    Respiratory infections by human bocavirus: molecular and clinical features.

    No full text
    O bocavirus humano (HBoV) é um parvovirus recentemente identificado em associação com a presença de sintomas de infecção do trato respiratório. Esse vírus possui um genoma de aproximadamente 5217 nucleotídeos que contém 3 open reading frames que codificam 4 proteínas (NS1, NP-1, VP-1 e VP-2). HBoV tem sido detectado em amostras respiratórias de diversas partes do mundo, incluindo Austrália, América do Norte, Europa, Ásia e África, o que sugere uma distribuição global desse vírus. Entretanto, nenhum estudo longitudinal de HBoV em amostras respiratórias foi realizado na América Latina. Dessa forma, nós realizamos um estudo prospectivo de HBoV em lavados nasofaríngeos (LFNs) coletados de pacientes com sintomas de infecção do trato respiratório (IRA) atendidos em um hospital universitário de Ribeirão Preto, SP e em um hospital universitário de Salvador, BA no período entre 2005 a 2007. 1288 LFNs de 1217 pacientes foram encaminhados ao laboratório de virologia e foram testados por PCR para HBoV. Desses pacientes, 962 eram menores de 5 anos e 177 eram maiores de 5 anos. Além disso, também foram analisados 50 LFNs de crianças menores de 5 anos que não tinham sintomas respiratórios. Todas as amostras positivas para HBoV foram testadas para todos os outros vírus respiratórios, incluindo o vírus sincicial respiratório (HRSV), rinovirus humano (HRV), influenza humano (HFLU), metapneumovirus humano (HMPV), parainfluenza humano (HPIV), coronavirus humano (HCoV) e adenovirus humano (HAdV). A carga viral de HBoV foi determinada por PCR em tempo real em todas as amostras positivas e o genoma completo de 19 amostras de HBoV foi seqüenciado. Com intuito, de fazer um levantamento sorológico e determinar sítios replicativos de HBoV, nós ainda clonamos e expressamos em S. cerevisae (Y258) o gene de VP2, que codifica uma das proteínas do capsídeo viral. A prevalência desse vírus foi de 4,8% em crianças menores de cinco anos e de 1% em pacientes maiores de cinco anos. HBoV não foi detectado em crianças sem sintomas. Dos 259 pacientes analisados em 2005, 25 (10%) foram positivos para HBoV. Esse vírus circulou mais frequentemente em abril, mês de maior incidência do HRSV. Em 2006, HBoV foi detectado em apenas 10 LFNs de 334 (3%) amostras testadas, sem qualquer pico de freqüência. Em 2007 HBoV foi detectado em 13 de 552 (2%) amostras, com uma freqüência de detecção um pouco maior em junho e julho. Os sintomas mais comumente observados foram rinorréia, tosse, febre e chiado, que foram observados geralmente em mais de 50% dos casos positivos para HBoV. Não houve uma diferença significativa na prevalência desses sintomas entre as crianças positivas e negativas para HBoV. Entretanto, foi observada uma maior freqüência de diarréia entre as crianças com esse vírus. Nesse estudo também foi documentado uma alta freqüência de co-infecções virais entre os pacientes com HBoV. Os vírus mais frequentemente associados com o bocavirus humano foram: HRSV, HRV e HAdV. Além disso, foi detectado uma maior carga viral media e uma maior freqüência de diarréia nos 15 pacientes com infecção exclusiva por HBoV do que nos pacientes com co-infecção. Esses resultados mostraram que HBoV pode alcançar títulos enormes (tão grandes como1014/mL) em LFNs de pacientes com sintomas respiratórios e que isso é associado a de diarréia. O seqüenciamento do genoma inteiro de HBoV realizado nesse estudo indica que a divergência genômica entre as amostras desse vírus é muito pequena. Como conclusão, nós demonstramos que HBoV circula e é detectado em associação com sintomas de infecção respiratória e diarréia no Brasil. Novos estudos, com um longo acompanhamento em diferentes populações serão necessários para determinar a sazonalidade e o real impacto clínico de HBoV em nosso país.Human bocavirus (HBoV) is a parvovirus recently identified in association with respiratory tract infections. HBoV 5217 nt genome contains 3 open reading frames encoding four proteins (NS1, NP-1, VP-1 and VP-2). HBoV has been reported in respiratory samples from children in several parts of the world (including Australia, North America, Europe, Asia, and Africa), suggesting that the virus circulates worldwide. However, no longitudinal studies of HBoV in respiratory samples have been reported in Latin America. We report a prospective study of HBoV in nasopharyngeal aspirates (NPAs) collected from patients seen for acute respiratory tract infections (ARI) at the University of Sao Paulo Hospital in Ribeirao Preto, southeast Brazil and at the University Hospital in Salvador, Brazil. 1288 NPAs from 1217 patients was submitted to the virology lab for respiratory virus detection from 2005 to 2007 and were screened for HBoV by polymerase chain reaction (PCR), whom 962 were under 5 years of age and 177 were older than 5 years. In addition, NPAs from 50 children under 12 years without IRA was also tested to HBoV for PCR. All samples positive of HBoV was tested for others respiratory virus, including the human respiratory syncitial virus (HRSV), human rhinovirus (HRV), human influenza (HFLU), human metapneumovirus (HMPV), human parainfluenza virus (HPIV), human coronavirus (HCoV) and human adenovirus (HAdV). These samples had their HBoV viral load determined by real time PCR and the viral entire genome of nineteen HBoV sample was sequenced. We also cloned and expressed in S. cerevisae (Y258) the gene of VP2, one protein of viral capside. The prevalence of this virus was of 4,8% in children under 5 years and 1% in adults, both with IRA. HBoV was not found on the patients without symptoms. In 2005, of the 259 patients tested, 25 (10%) were positive for HBoV. Interestingly, the virus circulated more frequently in April, the month of peak activity of respiratory HRSV. In 2006 HBoV was detected in only 10 NPAs out of 334 samples (3%) tested, without any notable peak of frequency. In 2007 HBoV was detected in 13 out of 552 (2%) tested samples with little higher frequency of detection in June an July. Rhinorrhea, cough, and wheezing were observed in more than 50% of the HBoV-positive children, and no obvious respiratory clinical differences were noted between HBoV-positive and negative children. However, was noted a higher frequency of diarrhea on HBoV-positive patients. In this study was also observed a larger frequency (71%) of viral coinfections between the HBoV-positive patients. The respiratory viruses more frequently associated with human bocavirus were: HRSV, HRV and HAdV. Interestingly, on the 15 HBoV-alone patients was observed a higher viral load and a higher prevalence of diarrhea than HBoV-coinfection patients. These results showed that this virus can reach enormous titles (like 1014) in NPAs from patients with respiratory infection symptoms and this is associated with diahhrea. The entire genome sequencing of HBoV of our study indicates that the genetic divergence between the HBoV lineages is small. In conclusion, we demonstrated that HBoV circulates and is detected in association with respiratory symptoms and diarrhea in Brazil. Long term surveillance will be needed to determine whether or not an HBoV season occurs and what is the real clinical impact of this virus in our country

    Response letter

    No full text
    corecore