7 research outputs found

    The Technologies Required for Fusing HPC and Real-Time Data to Support Urgent Computing

    Get PDF
    The use of High Performance Computing (HPC) to compliment urgent decision making in the event of disasters is an important future potential use of supercomputers. However, the usage modes involved are rather different from how HPC has been used traditionally. As such, there are many obstacles that need to be overcome, not least the unbounded wait times in the batch system queues, to make the use of HPC in disaster response practical. In this paper, we present how the VESTEC project plans to overcome these issues and develop a working prototype of an urgent computing control system. We describe the requirements for such a system and analyse the different technologies available that can be leveraged to successfully build such a system. We finally explore the design of the VESTEC system and discuss ongoing challenges that need to be addressed to realise a production level system.Comment: Preprint of paper in 2019 IEEE/ACM HPC for Urgent Decision Making (UrgentHPC

    The role of interactive super-computing in using HPC for urgent decision making

    Get PDF
    Technological advances are creating exciting new opportunities that have the potential to move HPC well beyond traditional computational workloads. In this paper we focus on the potential for HPC to be instrumental in responding to disasters such as wildfires, hurricanes, extreme flooding, earthquakes, tsunamis, winter weather conditions, and accidents. Driven by the VESTEC EU funded H2020 project, our research looks to prove HPC as a tool not only capable of simulating disasters once they have happened, but also one which is able to operate in a responsive mode, supporting disaster response teams making urgent decisions in real-time. Whilst this has the potential to revolutionise disaster response, it requires the ability to drive HPC interactively, both from the user's perspective and also based upon the arrival of data. As such interactivity is a critical component in enabling HPC to be exploited in the role of supporting disaster response teams so that urgent decision makers can make the correct decision first time, every time

    Patient emergency health-care use before hospital admission for COVID-19 and long-term outcomes in Scotland: a national cohort study

    Get PDF
    BackgroundIt is unclear what effect the pattern of health-care use before admission to hospital with COVID-19 (index admission) has on the long-term outcomes for patients. We sought to describe mortality and emergency readmission to hospital after discharge following the index admission (index discharge), and to assess associations between these outcomes and patterns of health-care use before such admissions.MethodsWe did a national, retrospective, complete cohort study by extracting data from several national databases and linking the databases for all adult patients admitted to hospital in Scotland with COVID-19. We used latent class trajectory modelling to identify distinct clusters of patients on the basis of their emergency admissions to hospital in the 2 years before the index admission. The primary outcomes were mortality and emergency readmission up to 1 year after index admission. We used multivariable regression models to explore associations between these outcomes and patient demographics, vaccination status, level of care received in hospital, and previous emergency hospital use.FindingsBetween March 1, 2020, and Oct 25, 2021, 33 580 patients were admitted to hospital with COVID-19 in Scotland. Overall, the Kaplan-Meier estimate of mortality within 1 year of index admission was 29·6% (95% CI 29·1-30·2). The cumulative incidence of emergency hospital readmission within 30 days of index discharge was 14·4% (95% CI 14·0-14·8), with the number increasing to 35·6% (34·9-36·3) patients at 1 year. Among the 33 580 patients, we identified four distinct patterns of previous emergency hospital use: no admissions (n=18 772 [55·9%]); minimal admissions (n=12 057 [35·9%]); recently high admissions (n=1931 [5·8%]), and persistently high admissions (n=820 [2·4%]). Patients with recently or persistently high admissions were older, more multimorbid, and more likely to have hospital-acquired COVID-19 than patients with no or minimal admissions. People in the minimal, recently high, and persistently high admissions groups had an increased risk of mortality and hospital readmission compared with those in the no admissions group. Compared with the no admissions group, mortality was highest in the recently high admissions group (post-hospital mortality HR 2·70 [95% CI 2·35-2·81]; pInterpretationLong-term mortality and readmission rates for patients hospitalised with COVID-19 were high; within 1 year, one in three patients had died and a third had been readmitted as an emergency. Patterns of hospital use before index admission were strongly predictive of mortality and readmission risk, independent of age, pre-existing comorbidities, and COVID-19 vaccination status. This increasingly precise identification of individuals at high risk of poor outcomes from COVID-19 will enable targeted support.FundingChief Scientist Office Scotland, UK National Institute for Health Research, and UK Research and Innovation

    The Impact of Simulated Bruxism Forces and Surface Aging Treatments on Two Dental Nano-Biocomposites—A Radiographic and Tomographic Analysis

    No full text
    Background and Objectives: Nowadays, indication of composite materials for various clinical situations has increased significantly. However, in the oral environment, these biomaterials are subjected (abnormal occlusal forces, external bleaching, consumption of carbonated beverages, etc.) to changes in their functional and mechanical behavior when indicated primarily for patients with masticatory habits. The study aimed to recreate in our lab one of the most common situations nowadays—in-office activity of a young patient suffering from specific parafunctional occlusal stress (bruxism) who consumes acidic beverages and is using at-home dental bleaching. Materials and Methods: Sixty standardized class II cavities were restored with two nanohybrid biocomposite materials (Filtek Z550, 3M ESPE, and Evetric, Ivoclar Vivadent); the restored teeth were immersed in sports drinks and carbonated beverages and exposed to an at-home teeth bleaching agent. The samples were subjected to parafunctional mechanical loads using a dual-axis chewing simulator. A grading evaluation system was conducted to assess the defects of the restorations using different examination devices: a CBCT, a high-resolution digital camera, and periapical X-rays. Results: Before mechanical loading, the CBCT analysis revealed substantially fewer interfacial defects between the two resin-based composites (p > 0.05), whereas, after bruxism forces simulation, significantly more defects were identified (p Conclusions: There were different behaviors observed regarding the studied nanocomposites when simulation of parafunctional masticatory forces was associated with aging treatments

    TELEPORT: Connecting researchers to big data at light speed

    No full text
    <p>Health and administrative data about people resident in the UK are generated by the NHS, government and other organisations and subsequently held in different locations across the UK's four nations according to devolved legislation and governance. Trusted Research Environments (TREs) were developed by organisations in academia, NHS, government agencies, and, in some cases, commercial companies to safely store this data and control access to it for research purposes. De-identified data is typically available for research via these TREs. However, each houses specific data based at different institutions, which adds difficulty to a researcher's task of trying to gather a full picture of scientific outputs for the entire nation due to the replication needed to analyse all available data across the country.</p><p> A solution to improving data access and efficiency for researchers is federated data access, enabling parallel access to data housed in multiple physically separated environments (without data moving from their host environments, instead being accessible from its host location to a researcher in a single safe, secure environment) where researchers can see the data required for their research projects. </p><p>Teleport is starting the transformation of traditional TRE access to data, partnering with the custodians of national-level data in Wales and Scotland (SAIL Databank and Scottish National Safe Haven) and the technology providers of the TRE platforms (the Secure eResearch Platform (SeRP) at Swansea University and EPCC at the University of Edinburgh). By making data accessible by connecting TREs, researchers could, for example, have better-facilitated access to understand rare diseases at scale and generally increase the quality of research in common conditions by increasing the sample size accessible in a single environment, rather than having to run multiple disparate analyses. It is the starting place for efficient study across the UK, promoting the move away from duplicated research in siloed environments, instead enabling better scientific outputs and health outcomes due to the increase in scale, granularity, and connectivity of data available. Both sites in scope for Teleport have national-level data holdings of complementary scale and research infrastructure of equivalent maturity to deploy, test, and develop the proposed access solution. </p><p>This work was funded by UK Research & Innovation [Grant Number MC_PC_23009] as part of Phase 1 of the DARE UK (Data and Analytics Research Environments UK) programme, delivered in partnership with Health Data Research UK (HDR UK) and Administrative Data Research UK (ADR UK).</p><p> </p&gt
    corecore