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Abstract

Aim: To enable a world-leading research dataset of routinely collected clinical images linked to other routinely collected
data from the whole Scottish national population. This includes more than 30 million different radiological examinations
from a population of 5.4 million and >2 PB of data collected since 2010. Methods: Scotland has a central archive of
radiological data used to directly provide clinical care to patients. We have developed an architecture and platform to
securely extract a copy of those data, link it to other clinical or social datasets, remove personal data to protect privacy, and
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2 Software architecture managing radiology data linked to population health data

make the resulting data available to researchers in a controlled Safe Haven environment. Results: An extensive software
platform has been developed to host, extract, and link data from cohorts to answer research questions. The platform has
been tested on 5 different test cases and is currently being further enhanced to support 3 exemplar research projects.
Conclusions: The data available are from a range of radiological modalities and scanner types and were collected under
different environmental conditions. These real-world, heterogenous data are valuable for training algorithms to support
clinical decision making, especially for deep learning where large data volumes are required. The resource is now available
for international research access. The platform and data can support new health research using artificial intelligence and
machine learning technologies, as well as enabling discovery science.

Keywords: Radiology; Big Data; AI; ML

Background
Advantages and challenges of using routinely collected
clinical images for research

Clinical images, especially when linked to other routinely col-
lected health data, are extremely useful for many types of re-
search: examining early/preclinical diagnosis [1], disease pro-
gression [2, 3], genotype-phenotype associations [4], devel-
opment of risk profiles [5, 6], computer vision methods for
biomarker extraction [7–9], machine learning approaches [10–
13], and discovery and classification of disease types [14]. The
emerging field of radiomics has the potential to bridge the gap
between medical imaging and personalised medicine [15]. How-
ever, collecting images for specific research projects is expen-
sive and constrains the scale of many studies. Research co-
horts are usually composed of a narrow subset of people with
a specific condition, which can make both generalising findings
and repurposing of images for research problematic. Use of rou-
tinely collected images, in contrast, opens up the potential for
very large-scale studies, which not only efficiently and effec-
tively complement smaller disease-based cohorts of patients but
are also extremely flexible when linked to extensive electronic
medical records, allowing for a wide range of disease areas to
be examined. However, whereas research images are typically
collected using specific image acquisition protocols under ideal
conditions, routinely collected clinical images are more hetero-
geneous.

Using clinical images for research and linking them to other
routinely collected clinical data is challenging because:

1) Existing software used to query/search for images from the
Picture Archive Communication System (PACS) is designed
for clinical care rather than research. The software makes it
easy to find all images for a particular patient but is not de-
signed to facilitate searching for all images with particular
characteristics such as body part; slice thickness, scanning
protocol, contrast agent, or patient medication; or linking to
other Electronic Health Record (EHR) datasets (e.g., outcome
data, prescription data).

2) Re-use of clinical images for research required de-
identification. However, identifiable data can be present
in many areas of the associated DICOM (Digital Imaging
and Communications in Medicine, RRID:SCR 018878) [16]
file metadata and/or may be present within the pixel data
themselves, “burned on” to the actual image.

3) Anonymisation of images can reduce the ability to per-
form linkage to other datasets, e.g., demography, prescrib-
ing, hospital admissions.

4) Reuse often requires approval from multiple data con-
trollers, and the complexity of de-identification increases
the risk of rejection of applications for research given the

amount of work the data controller may have to do to en-
sure that no identifiable data are released.

5) For deep learning projects, where large numbers of images
are required, the image extraction costs for research can be
prohibitive.

Scottish clinical and research data

Scottish clinical PACS system
Scotland has a single National PACS Clinical System that con-
tains all radiological images collected from 14 different health
boards. To date (2019), this includes 30 million different radio-
logical examinations from a population of 5.6 million and >2 PB
of data collected since 2010. It includes a range of modalities
(including computed tomography [CT], MRI, ultrasound, nuclear
medicine imaging, and plain film radiography). This system is a
live environment used directly for clinical care.

Provision of routinely collected text-based clinical data for research
Scotland has a relatively stable population with long-established
use of a unique healthcare identifier (the Community Health In-
dex [CHI] number) that is also increasingly seeded in data in
other sectors such as social care. A National Health Service (NHS)
Scotland service, called the electronic Data Research and Inno-
vation Service (eDRIS) [17], provides a National Safe Haven envi-
ronment (hosted by the University of Edinburgh) to support re-
search access to anonymised extracts of linked data from differ-
ent data controllers to answer specific approved research ques-
tions. The linkable phenotypic data include a range of national
datasets including, e.g., prescribing, death data, and hospital ad-
missions.

Subject to robust pseudonymisation safeguards and approval
by the Public Benefit and Privacy Panel for Health and Social
Care, individual patient consent is not required in Scotland. This
project assembles a library of imaging data and then generates
thoroughly redacted subsets for research projects. Multiple safe-
guards are applied. The subsets are themselves only released to
approved research projects within the controlled environment
of the National Safe Haven computers; any extraction of data
beyond that is subject to further controls to protect the privacy
of patients.

The technical safeguards described in this article and imple-
mented in this project are not perfect and are not the sole protec-
tion: rare medical conditions or identifying features may still be
present within the research extracts generated. Contractual and
administrative precautions manage these risks: researchers are
both contractually prohibited from attempting to re-identify pa-
tients or link against unapproved datasets and prevented from
exporting the raw data beyond the confines of the Safe Haven be-
cause any such export could enable such an attempt to be made.
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Nind et al. 3

Incorporating clinical imaging data into the wealth of available
datasets for research
A research copy of the data held within the Scottish National
Clinical PACS system has been created to enable the clinical
imaging data to be linked with the other routinely collected
datasets and be made accessible for research (given appropri-
ate data governance approvals). The research copy of the Clin-
ical PACS system is called the Scottish Medical Imaging (SMI)
Database. The data are held in the non-proprietary DICOM for-
mat.

The management of imaging data for research presents
a substantial set of challenges beyond those encountered
in the management of purely text-based records. Some of
these are variations on familiar challenges, such as de-
identification, whilst others are novel and intrinsic to this type
of dataset, such as size and compute requirements for big data
processing.

This article describes the architectural solution and software
platform developed to support hosting, extracting, and link-
ing the SMI data, which addresses the aforementioned chal-
lenges identified of using routinely collected imaging data for
research.

We first describe the project approach, a very high level sum-
mary of the requirements, then our architectural solution, an
explanation of why this solution met the requirements and why
our solution is different to that of other open-source solutions
for the large-scale hosting of imaging data. We explain how
the architecture enables feedback and enhancement improve-
ments from other sources. We then describe our progress to-
wards implementing the architecture and the use cases we have
tested.

Project Approach

There have been 4 phases to the project to date.

Requirement gathering

An initial requirement gathering exercise was undertaken at the
project inception eliciting requirements from the research com-
munity who will use the data extracts provided by the platform,
the National Health Service Data Governance representatives as
the data controllers of the data, and the National Safe Haven
staff who will use the platform to build cohorts and provision
relevant data extracts to researchers for analysis. We also in-
vestigated other open source and freely available platforms for
hosting and/or anonymising imaging data to see if any of these
could be used entirely or in part within our solution. We re-
searched both functional and non-functional requirements of
the solution.

Development of the architecture

We developed a range of option appraisals and designed an ar-
chitectural solution to meet the requirements.

Development of prototype

We developed prototype software to run in a Regional Safe
Haven environment managed by the University of Dundee,
whilst the SMI data transfer project was taking place in parallel.
This prototype supported 2 consented research projects, predict-
ing dementia from CT and MRI images. We then expanded the
prototype to run in the National Safe Haven.

Testing and case studies on sample data

The software was then tested on a 180-TB subset of the full
dataset including ∼3 million studies (which were loaded into
the Document Store—see below). These were images gener-
ated across Scotland during the same 2-week period in Febru-
ary for each year in a 7-year period. Linkage, extraction, and
anonymisation was performed for a range of case studies along
with performance and functional testing. (Case studies are
listed in Online Appendix D and included linking against the
Scottish Cancer Registry’s SMR06 diagnosis data and Radiol-
ogy Information System records, as well as the DICOM meta-
data.) The full set of historical data was still in the process
of being decrypted from the proprietary PACS vendor format
and could therefore not be used for complete testing at this
stage.

Platform Architecture

A list of high-level platform requirements is provided in Online
Appendix A.

Architecture overview

The high-level platform architecture is shown in Fig. 1. The Dis-
cussion section describes our future plans.

The SMI Data Repository is divided into identifiable and de-
identified zones. The SMI Analytic Platform is the Safe Haven
environment where researchers can access their relevant data
extracts.

Each zone has audited, controlled access with a clear sep-
aration of roles and functions. Only system administrators
can access the identifiable zone to carry out maintenance and
security functions. Only de-identification analysts can view
the potentially identifiable data in their duties. Research co-
ordinators can query de-identified text-based (including DI-
COM tag values) data for cohort building, linkage, and ex-
traction in the de-identified zone. Researchers can access de-
identified (using Project-IDs) metadata and de-identified pixel
data for their cohort within the Virtual Machine (VM) Safe Haven
environment.

The CHI number encodes potentially identifiable information
such as date of birth, so we use an encrypted version known
as EUPI (Encrypted Universal Patient Identifier) within the de-
identified zone, and this is typically used for patient-linking
tasks.

Two processes (historic and ongoing) extract DICOM files
from the proprietary PACS format received from the NHS. These
DICOM files contain identifiable metadata (DICOM Tags) that
are read and stored in full in the Document Store (a MongoDB
database) by the Loader. The DICOM files also contain the pixel
image information.

The ”Identifiable DICOM Tag Data” are analysed for poten-
tially identifiable data. Relative file paths and a subset of DI-
COM Metadata that can be de-identified and is useful for cohort
building are sent to the ”inventory tables” (a relational database)
and stored using EUPIs within the Identifiable Zone. A mirror
of the Inventory Tables is provided to data analysts in the de-
identified zone. This mirror supports condensing tag data, e.g.,
to study/series level to improve performance of cohort genera-
tion/linkage.

The inventory tables can be queried like any other database
by research co-coordinators to construct cohorts using their ex-
isting working procedures. Once a research extract has been
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4 Software architecture managing radiology data linked to population health data

Figure 1: Overview of the architecture. There are 3 zones: the identifiable zone (which holds the raw data), the de-identified zone (where cohort building and linking
to other data takes place) and the Safe Haven environment (where a researcher carries out their analysis).

created, the corresponding image UIDs (study/series or SOPIn-
stanceUID) are supplied to the extraction process. The extrac-
tion process uses the inventory tables to locate and anonymise
the DICOM files held in the data store. These anonymised files
are then provided to the researcher in the Safe Haven environ-
ment.

A summary of the expected functionality of the data stores
and process within the architecture is provided in Tables 1
and 2.

Architectural support for feedback and enhancement
from other sources

The architecture uses a microservices architecture. Individ-
ual components (microservices) can be turned on or off as
needed and support multi-process execution for linear scal-
ing. The architecture has been designed to support iterative
enhancement based on feedback from research outputs gener-
ated in the researcher Safe Haven environment or directly from
external sources (e.g., clinical experts). Such enhancements
could be:

� New datasets, such as clinical mark-up (capturing ground
truth data that have been generated by a radiologist mark-
ing up data for a set of images)

� New processes to improve cohort generation or dataset
preparation (e.g., software that runs over pixel data and re-
turns the size of the airways shown in CT scans), i.e., derived
datasets.

� Algorithms that could run over source images or textual
data (e.g., software that uses natural language processing
on imaging metadata to find images that show signs of
dementia).

There are several key benefits:

� This is an opportunity to incrementally improve the quality
and value of datasets from SMI.

� Research projects could add expertise at a scale that will
never be available within a single development team.

� It can improve collaboration and sharing across projects.
� It supports active engagement by the user community and

increases support for the service.

Analysis
Current status of the data

A copy of the historical imaging data (from 2006 to September
2018) in PACS proprietary format has been transferred onto the
hardware environment and converted into the non-proprietary
DICOM format. A feed from the National PACS to retrieve the
data from October 2018 onwards is in the process of being com-
missioned.

The first system test was conducted using ∼3 million stud-
ies (∼10 million series and ∼300 million images). These data (all
the scans taken during the same 2-week period in February for
7 consecutive years) have been used as test data for software
development.

The implementation has enabled extraction of images based
on cohorts built from data captured in DICOM tags and linking
data from other sources—as illustrated in the “Use Cases” sec-
tion. At this stage, operation still involves some manual inter-
vention that we intend to automate as development progresses,
and only the initial subset of DICOM tags (as recommended by a
domain expert) is promoted, but the system is designed to facil-
itate enhancement and extension in future [18].
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Table 1: Overview of data stores

Data Description

DICOM files (unmodified
historic data)

DICOM files are stored unaltered in a file archive. There are many reasons why we wish to keep the
identifiable data and store the original DICOM images:

• Any program developed to strip all identifiable data from the DICOM files and tags risks rendering the
whole dataset unusable if this is done incorrectly. Linkage to other datasets would subsequently be
either incorrect or impossible.
• It is conceivable that future data de-identification strategies will wish to make use of some identifiable
data and removing that data would therefore limit future options.
• The NHS may wish to use the data as a secondary offline disaster recovery system or use the data to
populate a clinical system from an alternative provider. In this case it needs to be technically feasible to
generate the data in identifiable form in a format that is non-proprietary and as close as possible to the
DICOM files as they were originally captured.

Identifiable DICOM tag data All tag metadata from the DICOM files are extracted to a MongoDB database in a searchable format.
These tag metadata are stored in an identifiable format because de-identification analysts need to know
what the identifiable data are so that they can remove them, e.g.,

• If the patient name is Mrs Jones, then a de-identification analyst searching for identifiable data in the
clinical report will need to know to look for the text “Jones” in order to remove it.
• To check whether an image is identifiable, the de-identification analyst might need to know the CHI
number in order to check that it is not burnt into the pixel data.

Inventory tables A subset of data from the Identifiable set above is copied here. This is a relational database that contains
suitably cleansed and de-identified image metadata (and file paths), i.e., has been confirmed to be well
populated, of high quality, and does not contain identifiable data. This is used by the research
co-ordinators for cohort creation and extraction to the Safe Haven. The data are indexed using EUPIs.For
example, DICOM age strings can express the age in years, months, or days (e.g., 075Y, 006M, or 002D).
The cleaned and homogenized metadata will store these in a consistent and easily queried numeric
format. Other metadata fields may be a single value summarising data stored in multiple different
DICOM tags. For example, by analysing the acquisition position of the images it is possible to identify
examinations in which the same volume has been acquired repeatedly in a single series; when used in
conjunction with tags that indicate whether contrast was used during the examination, this can be used
to disambiguate contrast bolus imaging from other acquisitions that may also use contrast.

Cohort and associated
anonymous research
extracts

Any research project will start by defining a relevant cohort and obtaining the necessary
ethical/administrative approval in consultation between the researchers and the research
coordinators—this is an out-of-band process outwith the iRDMP system, so not shown here. The data
analysts then assemble a dataset (the anonymous research extract) for that research project by querying
the inventory table, possibly linked against other data sources via the EUPI (pseudonymised patient ID,
explained below) and trigger the Extraction Microservices to export the appropriate subset of columns
made available to the research users. For example, a project might request all available brain MRI scans
from patients who have been prescribed gabapentin and want the dosage information and patient age;
they would be given a set of image data (the scans themselves, passed through the DICOM file
anonymiser described later) and a table of associated metadata including the dosage information for
each de-identified patient.

Research Data Management
Platform (RDMP)

The RDMP manages and monitors the extraction processes.

CHI to EUPI mapping table Scotland uses the CHI unique identifier for health data. Adhering to the guiding principles of data
linkage for research [14], the National Safe Haven separates out the roles of indexer and linker. Research
co-ordinators link data from a range of sources provided to them with the CHI replaced by the EUPI
identifier. The imaging data also follow this methodology. The mapping table is securely held and is only
accessible via the automated conversion process. An individual can be given multiple CHIs if they access
healthcare in different regions, and it takes time to reconcile; therefore the mapping table is updated
monthly.

Justification of different tools within the plugin
architecture

Core platform
The platform has been implemented building upon the open
source Research Data Management Platform (RDMP) [19]. The
RDMP stores, manages, cleans, de-identifies, and processes data
to create reproducible, auditable data extracts for research and

in the past 5 years has been used to support >500 projects, gen-
erating >2,000 data extracts of mainly phenotypic text-based
data for epidemiological research projects and clinical trials. The
RDMP already provides many of the core components such as
auditing, logging, deduplication, and anonymisation required
for populating the relational database in a platform-agnostic
way, as well as linkage and extraction; therefore it was efficient
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6 Software architecture managing radiology data linked to population health data

Table 2: Overview of Processes

Processes Description

Promotion of de-identifiable
tags/metadata

Promotion is a 2-stage process. The first stage promotes images for which there is an anonymisation
protocol (e.g., CT images). Anonymised tag data are pushed to the inventory table. These tables support
the extraction processes and support routine practices, e.g., data cleaning. A subset of these data (e.g.,
only primary/original images) is pushed to the de-identified zone, indicating that the images can be used
for cohort generation/image extraction. This data push can include collapsing data, e.g., to series/study
level. It is not feasible or desirable to proactively analyse the complete identifiable DICOM tag data in
order to promote all tags. This is in part due to the difficulty in determining that a tag of a certain type
does contain identifiable information for (i) the whole of the current archive and (ii) future PACS images
that will be taken. A tag can be promoted in 2 circumstances: (1) it is determined not to contain
identifiable information or (2) the identifiable information it does contain can be de-identified.
Sophisticated techniques such as natural language processing (NLP) methodologies can be used to
determine Condition 1 or find a solution for de-identification for Condition 2. The solution for Condition
2 is known as an anonymisation profile and can be saved for reuse. Once a tag can be flagged as safe for
promotion it is moved to the inventory table. This is an iterative process (future studies with unique
requirements will inform which data are prioritised for anonymisation/promoted).

Promotion of image types
that are extractable

This process whitelists images that are extractable in the sense that pixel data can completely be
de-identified. Some images, particularly ultrasounds, may have identifiable information such as patient
name or CHI watermarked on the image. Which images can be de-identified is stored in the metadata
catalogue, but the rules regarding how images are de-identified are stored in CTP [17] anonymisation
scripts that apply to all images. These scripts contain rules such as “if Modality is US and Manufacturer
is X and model is Y then blank out pixels in the rectangle (0 0 1000 200).”

Mapping (CHI-EUPI) This process is called when metadata are promoted to the de-identifiable zone to replace identifiable
CHIs with EUPI. It is an automated process so that no individuals can see this mapping.

Cohort creation process A set of software tools (or manual SQL queries if the user prefers) that query the DICOM metadata within
the inventory tables to select images relevant for a particular cohort (by applying filters that describe
researcher requirements). The resulting cohort forms the basis for both the initial and subsequent
releases of data to the Safe Haven for the relevant study, and as such it is critically important that the
cohort be identified and managed correctly.

Extraction process This process uses the cohort database and inventory tables to determine which files to extract for a
particular research project. It calls the DICOM file anonymiser to de-identify the relevant files used to
build the cohort for release to the researcher. After the cohort output and the de-identified DICOM files
are curated, the process triggers a release into the researcher Safe Haven environment.

DICOM file anonymiser

The DICOM file anonymiser:
• Obtains the file(s) from the file archives
• Anonymises the pixel data of the file if necessary
• Anonymises the metadata in the file (leaving only the whitelisted tags)
• Converts the file to an alternative format if required
• Returns the final file(s) to the user

Researcher VM with tools to
view and manipulate images

There are 2 main use cases: small-scale studies in which a researcher team may wish to open and mark
up each image by eye and large-scale studies in which software and algorithms will be developed by the
users of the system to analyse the images for their specific project. The different tools available within
the Safe Haven meet both sets of requirements. The researcher VM image includes a standard set of
tools, which will be increased over time as the requirements increase. Example tools are MicroDICOM
(simple DICOM viewer), ClearCanvas (open-source PACS client, cf. Carestream), and XNAT. The VM
should have the capability for users to securely add their own tools. The VM provides access to the
associated data from study-specific image metadata and pixel data but does not allow row-level or pixel
data to be extracted. Access to the internet is restricted when analysing the data.

to build upon this platform to handle imaging data as well (cre-
ating the “imaging RDMP” [iRDMP]).

Choice of architecture
A microservice architecture using the RabbitMQ message broker
[18] simplifies development, testing, and refinement of compo-
nents in isolation, minimising and containing the adverse ef-
fects of changes. A microservice architecture is one that de-
composes a monolithic application into a set of smaller loosely
coupled services communicating over well-defined interfaces
[20]. Advantages of a microservice architecture as opposed to a

monolithic approach have been known in the IT industry in re-
cent years (e.g., Amazon [21], Netflix [22]) and recently for health
data [23].

Non-structured database solution for identifiable metadata
The data in the DICOM tags are largely unstructured and deeply
hierarchical. This is challenging to represent in a relational store.
Moreover, their structure may change over time (e.g., new tags).
Consequently, the use of a document-oriented, flexible, and dy-
namic data storage system was deemed necessary. MongoDB
[24] was selected as the NoSQL database technology because the
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Table 3: Roles

Role Description

Researchers Carry out the research on a dataset extracted from the SMI DB and other linked data. Any project may
have a variety of researchers including clinicians, statisticians, radiographers, image analysis and
machine learning experts, and so forth. They view and work on the PACS images within a Safe Haven
environment.

Research
coordinators/cohort builders

Work with the researchers to produce the data extract that allows the research study to be carried out.
Research coordinators understand where the data are stored and how to link across datasets and will
run software, write scripts, query databases, etc., to produce the final cohort datasets.

Data analysts Work with de-identified PACS data to produce more usable versions of the data for research coordinators
to work with. Over time data analysts (working with domain experts) may produce additional mapping
tables and categorization systems that make it easier for researchers and research co-ordinators to work
with the data.

De-identification analysts Are responsible for ensuring that as many data as possible are made available to research coordinators
for the creation of cohorts but that no identifiable data reach the coordinators. Much of the
de-identification task is automated, but the system needs to be continually monitored and new DICOM
tags added to the whitelist (or blacklist) as required.

System administrators Are part of the infrastructure team and are responsible for building and maintaining the underpinning
infrastructure, security, network separation, monitoring and supporting automated processes. Supported
automated processes would involve checking, e.g., whether there were errors in the data load process or
data extraction process. They have privileges and expertise to debug and/or restart these processes.

Software developers Produce any new software required within any zones of the environment. The software is developed and
tested outwith the production environment. Deployment of software updates will be carried out by
system administrators.

hierarchy of DICOM tags can be mapped directly to a JSON doc-
ument, then indexed and queried efficiently. This facilitated the
transfer of images across database collections and use of queries
against DICOM tags to select and control the promotion of data
to later stages in the process.

Within the architecture the MongoDB database provided a
middle ground within the ETL data flow. It allows mappings
to the relational database schemas to be quickly modified and
tested, while being able to quickly reload and reprocess data
from MongoDB rather than the slow process of going back to DI-
COM files, reducing the petabytes of raw DICOM files to terabytes
of queryable data.

Structured database solution for de-identifiable metadata
Many DICOM servers and APIs have a way of representing DI-
COM in a relational schema, e.g., dcm4chee [25]. We have used
our own (dynamic) cut-down schema for several reasons:

� To present something to data analysts that has a simplicity
(without requiring DICOM expertise) on the same level as the
other linkable datasets hosted on the National Safe Haven.

� To optimise for linkage, i.e., the ability to limit the number
of table joins needed and create efficient query-oriented in-
dexes, e.g., PatientId+ImageType+StudyDescription.

� To be able to adjust this schema and regenerate the data as
future development requires.

� To be able to add additional curated fields from external
sources or transformed columns such as results from expert
mark-up as ground truth data.

� To be able to store (and therefore expose) a limited set of tags
(those we understand will not contain identifiable data).

Anonymisation tools
There are many different software programs that can be used to
de-identify imaging data. We tested the feasibility of 3 different
widely used programs (DICOM Confidential [26], XNAT [27, 28],
CTP [29]) in deciding which to adopt as part of the pipeline. A
summary of each is provided in Online Appendix B.

For a meaningful comparison of the tools, a set of criteria
were devised, and each de-identification program was examined
in turn against these criteria using a rating of 1–5 (where 5 is
the best). We grouped the results into 3 different categories: core
functionality, user friendliness, and support. Table 4 provides a
summary of the scores for each category, with the detailed anal-
ysis provided in Online Appendix A.

In summary, DICOM Confidential was ruled out owing to the
quality of the documentation and the lack of first-party or com-
munity support. We found that some of the images produced by
DICOM Confidential were corrupted and chose not to investigate
any further because the functionality of the other 2 tools seemed
superior.

There was little difference in the functionality of CTP and
XNAT. They are both well-supported tools that could perform the
required tasks. The overall score of CTP was higher than XNAT.
We thought that the XNAT image “bundling” for applying rules
to subsets of images would be a useful capability that CTP does
not provide. The pixel-level anonymisation capability seemed to
be much better supported and straightforward in CTP, and this is
very important for this project. For these reasons we chose CTP.

NIFTI as a method of de-identification
NIFTI (Neuroimaging Informatics Technology Initiative) is an al-
ternative to DICOM as a medical image storage file format. Origi-
nally created for neuroimaging, NIFTI stores image data as a sin-
gle 3D image (.nii file), whereas DICOM stores a separate image
file for each slice of the scan. In addition, the NIFTI format only
stores pixel data and metadata related to the image itself, not
any patient or study information as one would find in a DICOM
image. This makes NIFTI a possible method to “anonymise” DI-
COM images. Not all image modalities and compression meth-
ods are supported however, and conversion tools require exten-
sions to interpret the private tags that some image scanners
write into the DICOM files to describe the pixel data. Therefore,
NIFTI was not chosen.
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Table 4: Score of different de-identification tools

Tool Core functionality User friendliness Support Total

XNAT 37 21 22 80
CTP 41 24 25 90
DICOM Confidential 35 24 14 73

Maximum scores: 45, 30, 25 for a total of 100.

NIFTI has become popular in some machine learning appli-
cations and is preferred over DICOM owing to the ease of deal-
ing with only 1 file representing the whole 3D scan. The images
for each research project can be provided in a range of formats
(including NIFTI), but conversion to NIFTI was not adopted as a
method for de-identification.

Pixel data and anonymisation
Primary original CT scans were found to contain no “burned-in”
text, i.e., no text within the pixel data. For MRI and other images
we integrated a text detection tool into our extraction pipeline,
running each image through the Tesseract open source OCR tool
(originally developed by Hewlett-Packard) to detect the presence
of any readable text.

In some cases, particularly head scans, the pixel data them-
selves may be inherently identifiable [30–32]. This requires
special-purpose software, however, because the pixel data are
never exported beyond the Safe Haven environment and the use
or installation of such software would not be permitted, and any
research project would be denied access to the data for this pur-
pose. In a very few cases something could be identifiable by un-
aided inspection—e.g., a distinctive injury or piece of jewellery;
this is an issue that needs further consideration.

Software deployed in the Safe Haven analytical environment
We investigated several tools to deploy into the Safe Haven for
managing, viewing, and manual annotation of images by re-
search teams. We chose MicroDICOM (simple DICOM viewer) [33]
as the first example to use. Over time it is expected that the num-
ber of tools available as part of the pre-installed VM will increase
and that researchers will have the capability to install their own
preferred software tools.

Comparisons to other existing systems

Given the different imaging platforms in active development
to support research projects, we investigated alternative plat-
forms so that we did not re-invent the wheel. In general terms,
other solutions have concentrated on consented cohorts from
researcher-collected research images rather than much larger
unconsented data from routinely collected “real-world” images.
The architectural solution developed by others is generally a
large anonymised database (sometimes distributed) containing
all the images with permissions to see, extract, and run pipelines
on the imaging data configured for each research group. The
metadata provided are limited and relatively clean in compar-
ison with routinely collected data. The architectural challenges
and solutions are therefore very different. For example, a key
functionality of the platform is the efficient and effective selec-
tion of anonymised cohorts from petabytes of noisy and hetero-
geneous identifiable data.

If the requirements were to store a de-identifiable, clean, ho-
mogenized copy of all of the pixel data and metadata within the
de-identifiable zone, we could have used one of the many excel-
lent open source platforms for managing large volumes of imag-

ing data such as OMERO [34, 35], XNAT [27, 28], or ClearCanvas
[36]. There are several reasons why we did not choose this ap-
proach and therefore did not use such platforms to manage the
core data repository:

� We envisage that the methods to de-identify data will change
over time as our understanding increases and technological
solutions improve. It is impractical to re-create >2 PB of de-
identified images each time our methodology improves.

� It is unnecessary to undertake the effort to validate any de-
identification method on all DICOM tags when only a small
fraction of these will be required by research teams. It is un-
known which ones will be required up front.

� A proportion of all the images will never be ex-
tracted/released for research projects because they will
not meet the cohort requirements. De-identifying imaging
data reactively, only when required for a specific project,
removes the requirement to carry out a needless time-
consuming and computationally expensive de-identification
process on images that are never required. (Conversely, a
given image may be de-identified multiple times, once for
each project. This is an issue that we plan to resolve in
the next stage of development. We expand on this in the
Discussion section).

� It is risky to test a specific de-identification tool on sample
data and trust that it will therefore also be successful for
variations of routinely collected data from multiple sources
and vendors. The architecture was designed to reduce this
risk by default blacklisting all data until proven otherwise, in
which case the metadata and/or image is then “promoted” to
a whitelist.

� The data are currently >2 PB and expected to grow at a rate
of ∼400 TB per year. There is substantial cost in maintaining
2 copies of the data both in terms of hardware and the main-
tenance required to update a duplicate as new data arrive (an
identifiable version of the data is required in the identifiable
zone to meet Requirement 1—see Online Appendix A).

� Hosting duplicate versions of the data introduces additional
data security and governance risks.

� Different research projects require different de-
identification. For example, the granularity of date and
patient age data may change depending on the specific
questions posed by a research project; the overarching rule
is that the data be de-identified as far as possible while
meeting the research requirement.

� Following the data protection principle that individuals
should see the minimum data to fulfil their job role, there is
no need for research co-ordinators to see the pixel-level data
to build cohorts; therefore, only text-based metadata are pro-
vided for cohort building.

Although existing solutions will not fully meet the require-
ments of this programme, one of our core principles is to reuse
as many applicable, open source or freely available tools as pos-
sible; i.e., do not try to re-invent the wheel. Therefore, where rel-
evant, we have included other software within our architecture.
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Testing

The SMI microservices, and the RDMP framework upon which
it relies, have been developed entirely using a test-driven devel-
opment approach. Continuous integration (CI) unit and system
integration tests ensure code stability. Approximately 1,450 au-
tomated tests cover the core RDMP code base, and in excess of
300 tests run on the SMI microservices.

Following development of a baseline version, functional and
non-functional manual testing was undertaken. The test cases
were planned and documented in advance, following a series
of interviews with clinicians, academics, and technical staff.
While these scenarios were planned, documented, and agreed
upon, the approach to executing the tests was deliberately as ex-
ploratory as possible rather than restricted by specific test script-
ing.

Exemplar-driven use cases
A number of use case scenarios were defined with input from
researchers (listing in Online Appendix D). These scenarios were
further elaborated by a team from eDRIS, in effect, performing
a dry run as though these were real research projects. The test
cases assessed included the following scenarios:

� Cohorts can be generated using the metadata repository in-
formation

� Images can be returned where the cohort has been generated
from another dataset

� Cohorts and images can be identified using a combination of
the metadata repository and other data sources

Scalability testing
Performance was benchmarked at the main processing stages of
the end-to-end solution: initial load, population of the relational
DB, and extraction/anonymisation.

Initial Data Load: DICOM files to MongoDB

� Speed of population: 66 days per year of data
� Disk space consumed: 7.2 kB per image, 2 TB per year of data

Populating the metadata repository

� Speed of load: ∼600 image rows per second; 6 days per year
of data

� Disk space consumed: 180 GB per year of data

Once deployed to the National Safe Haven and tuned, perfor-
mance proved sufficient to ingest the initial snapshot of data (up
to September 2018) and is expected to keep up with future data
feeds from the PACS once that is provisioned.

Extraction and anonymisation

Test were run on increasing numbers of images, and the process-
ing time was logged as shown in Table 5. These tests were run
using CT scans only (other modalities can have a significantly
higher number of images per series and/or larger file sizes). Each
DICOM file is ∼0.5 MB. On average each CT series has 325 images,
giving a total file size of ∼170 MB. The hardware on which this
runs is summarized in Online Appendix C.

Discussion

The system we have developed is not a new tool for manag-
ing and viewing images like XNAT, OMERO, MicroDICOM, and

ClearCanvas. iRDMP is a platform and pipeline for extracting im-
ages from a directory of images based upon cohort selection cri-
teria, anonymising them and copying the images into a secure
location for analysis. Theoretically a tool/system for managing
and viewing images from a single data store could have been
configured/enhanced with a permissions layer to restrict access
to only the images each research group had the right to see. This
model was discounted because it did not meet the requirements
for several reasons:

� Risk of hacking
� Risk of de-identification going wrong
� Speed of access
� Researchers wishing to use their favourite tools to manage

and manipulate imaging data
� Cohort building functionality and linking to other datasets

unavailable within such tools
� Speed of de-identification on the fly, or needing 2 copies of

all of the data

Applicability/potential of the architecture and platform
to be utilized in other environments or use cases

There are many different platforms in active development to
support multiple research projects using clinical imaging data.
Our architecture has not just been designed to fulfil Scottish
data governance principles and data structures—there is a much
wider applicability. There are many other Safe Havens nation-
ally and internationally [37, 38] where such a solution might
be applicable, and there is a trend towards the creation of new
Safe Havens. Although within our architecture data extracts are
viewed within a Safe Haven Analytical Platform (as part of the
Scottish Data Governance requirements), the software platform
can extract data to any destination. The software could therefore
be utilized by other groups or organizations to manage imaging
data and build cohorts for extraction that do not use Safe Haven
environments.

We have tested our software on 2 different environments
with different hardware and VM tools: a regional Safe Haven and
the National Safe Haven. It proved flexible enough to work in
both environments.

We have created a Docker-based integration repository
[39] that supports automated testing (in Travis CI) of the
full stack of microservices with test data generated by
BadMedicine.Dicom (BadMedicine, RRID:SCR 018879) [40]. This
ensures that deployment of the tech stack is simple and
reproducible.

Potential impact of enabling this resource

The SMI data, linked to other datasets, along with the se-
cure iRDMP platform we have developed have the potential
to reduce the costs and widen access to large quantities of
routinely collected de-identified images at scale. They also
have the potential to reduce the effort of obtaining gover-
nance approval because a data controller–approved method
for de-identification and access has already been agreed. In-
creasing the availability of large-scale routinely collected imag-
ing datasets linked to other forms of health data for both
industry and academic use will hopefully lead to a greater
likelihood of achieving results translatable into diagnoses and
treatments.
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Table 5: Scalability of anonymisation processing

No. image IDs Anonymisation run time Total file size Mean run time per file

3 Negligible 1.5 MB Negligible
2,264 0.3 hours 1.2 GB 0.54 sec
89,415 1.5 hours 50 GB 0.06 sec
∼1.2 million 28 hours 630 GB 0.06 sec
∼17.2 million 65 hours 8.5 TB 0.01 sec

Future plans

Short term
There are several developments that will enhance the function-
ality beyond that already provided, which we aim to implement
in the near future. Rather than the limited subset of CT and
MRI metadata tags currently promoted, we plan on promoting
many more of these tags. We would like to trial the use of the
wider RDMP tool for cohort building and audit within the de-
identifiable zone. This will require training on the tool and slight
modifications to existing workflows. We would also like to fully
automate the processes once the testing of the components has
been completed. We are in the process of loading all historical
data into the system, after which time we would like to carry out
some performance testing of the solution to identify and inves-
tigate bottlenecks.

Medium term
As well as enabling other modalities (in addition to CT and MRI),
we would like to support complex cohort building:

� Structured Reports are summary information mainly stored
in free-text format that have been populated by a clinician
about the study. They can include patient information such
as why the scan was requested in the first place, the condi-
tion found, and family history. A cohort derived from struc-
tured reports might seek to extract all the images where a CT
scan was performed because a lung tumour was expected.
Structured reports are challenging to query because they can
be highly identifiable and are free text and sparsely popu-
lated. As such, natural language processing methods have
been widely used to extract information from the reports.
We plan on utilising and extending many of these methods
within the platform to extract relevant metadata from the
reports that can then be used for complex cohort building.

� Pixel Data contain information that could be helpful for
building a cohort of relevant images, e.g., extracting all x-
ray images of the knee where the depth of cartilage is
<2 mm. This information is not captured in the DICOM
metadata and instead would be obtained using an image-
processing algorithm to extract supporting features. We plan
on developing automation processes where potentially rel-
evant images are opened and the algorithm applied to the
pixel data returning the cartilage depth. The cartilage depth
can then be used to link with other data.

� Complex DICOM Metadata: The same information can be
found within different DICOM tags depending on the source;
e.g., identifying an image as a susceptibility-weighted imag-
ing sequence requires checking 3 different fields for the oc-
currence of 1 of 4 possible strings and then filtering out some
specific mismatches. This leads to problems of standardiza-
tion, metadata, and definition of data dictionaries. In Scot-
land there are 4 different radiology information systems that
hold data in different ways. There are additional complexi-

ties due to conflicting requirements for standardization for
the purposes of cohort building and research use. We plan
to develop algorithms for text mining and imaging metadata
standardisation to provide summary data (data dimension-
ing), which can then be logically queried for cohort selec-
tion. We plan on investigating unsupervised machine learn-
ing techniques to group images into commonly used clusters
such as body area.

Long term
Simply copying pixel data for each research project may not
scale for imaging data, where storage could quickly become in-
feasible as the Safe Haven hosts ever greater numbers of stud-
ies each requiring large imaging datasets. An efficient method
of sharing the pixel data between multiple studies may be
required. However, each study will have different metadata,
e.g., study-specific patient identifiers in the image header, so
a solution that combines shared pixel data with study-specific
non-pixel metadata is needed. We plan to investigate differ-
ent solutions such as a virtual file server (already developed
in prototype), requiring each research group to purchase more
disk space should their project require it, pulling images in
batches/caching or another technical solution entirely. Differ-
ent strategies for serving images may be required, such as a file
share for machine learning consumption but a DICOM server
when using a DICOM image viewer.

We are fortunate to have received significant funding from
the Medical Research Council (MRC) and Engineering and Physi-
cal Sciences Research Council (EPSRC) to deliver all these future
plans within a 5-year programme grant called PICTURES (Inter-
disciplinary Collaboration for Efficient and Effective Use of Clin-
ical Images in Big Data Health Care Research).

We are very interested in collaborating with other groups
working on any of these issues.

Limitations of the Architecture

We are aware of some limitations of the current architecture:

� Data quality is an issue inherent in the reuse of routinely col-
lected clinical data (as opposed to data being collected specif-
ically for research purposes), e.g., typographical errors mark-
ing an MRI as a “Brian” scan rather than “brain”—something
overlooked as irrelevant for clinical use, but needing extra at-
tention here.

� The “unconsented” nature of these data mandates control
over the research data provided to projects to guard patient
privacy, limiting the options for such projects; research is on-
going to mitigate this.

� Automatic detection and redaction of text is essential on this
scale but still needs manual intervention and tuning to keep
redaction to a low enough level to deliver useful data. To date,
869 “special case” rules have been added to the IsIdentifiable
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tool’s dataset: e.g., the “Princess Royal” hospital being iden-
tified as a name rather than an organization.

� Huge number of images can make cohort creation cumber-
some at the image level. To address this, we are adding
support to the infrastructure and relational database to en-
able research coordinators to mostly operate at the study
level.

� By not anonymising each image once on initial receipt we in-
troduce additional complexity and increased storage require-
ments. In addition, we have to repeat the anonymisation task
each time the image is used, so we have more work to do. We
trade this off against the ability to apply better anonymisa-
tion later. If the repetition proves an issue in real use, this
can be mitigated through caching previously processed pixel
data.

� Duplicating the image data for each research project will
limit future scaling to multiple projects; some potential
ways of addressing this are discussed in the previous
section.

� The relational database structure is not ideal for some more
complex parts of DICOM. We believe that for cohort gener-
ation our flattened relational structure is simple and func-
tional, but we may discover cases in the future where it be-
comes cumbersome for some parts of DICOM. If so, hier-
archical data can be incorporated within MySQL via JSON
columns.

Conclusions

We have designed an architecture that meets the requirements
of data governance and security, and initial indications suggest
that it will manage and provide extracts of routinely collected
imaging data linked to other relevant datasets for research from
the >2 PB of SMI data. We have tested the extraction system on
5 use cases, based on real exemplar scenarios.

The Background section of this article identified 5 challenges
to using routinely collected clinical images for research.

The limitations of existing patient-centric image handling,
Challenge 1, are addressed by extracting and indexing other at-
tributes identified by researchers: instead of retrieving a specific
patient’s imagery, we can search for images by a combination of
parameters such as body part, patient age, or cross-referencing
with other datasets, e.g., “all head/brain MRIs of patients with a
diagnosis of glioblastoma.”

To address Challenge 2, the pervasive presence of poten-
tially identifying information within various data fields and the
image pixels themselves, the platform uses a data controller–
approved, standardized de-identification workflow, with a “de-
fence in depth” strategy employed: even if the anonymisation
procedures fail earlier in the pipeline, unexpected information
is detected and reported to the system operators before release
to researchers. To mitigate the risks to the data controllers of
providing unconsented routinely collected images for research
the platform works in accordance with the Scottish Govern-
ment guiding principles for secure linking, anonymising, and
analysing datasets for research, where a subset of data for a
specific cohort are linked for an approved research project and
access provided via a Safe Haven environment (the NHS Scot-
land term for a Trusted Research Environment) [41]. Access to
the data can be revoked by the data controller at any time, and
researchers cannot extract/output any information other than
aggregate-level results from the environment. There is a separa-

tion of the roles of indexer, linker (carried out by a trusted third
party or Safe Haven staff), and researcher.

The original identifiable data are maintained to enable link-
age to other datasets (addressing Challenge 3, the barrier that
anonymisation normally presents to such linking) but are not re-
leased for cohort building or for research. The use of encrypted
numerical patient identifiers (using the same encryption for
both image metadata and other eDRIS datasets) also facilitates
some linkage without exposing the original identifier: an MRI
scan can be matched with a cancer diagnosis or patient admis-
sion record without exposing that patient ID.

Developing the handling, indexing, and anonymisation sys-
tem in a robust, reusable way and incorporating multi-layered
safeguards allays data controller concerns about the quality of
anonymisation (Challenge 4), while amortising the substantial
development and testing costs across multiple research projects
makes it more cost-effective to extract large sets of images for
deep learning purposes, which might otherwise be uneconomi-
cal (Challenge 5).

No non-trivial dataset is likely to be perfect, particularly
when data gathered for one purpose is being re-purposed, so
each research project will need to apply appropriate quality con-
trol checks; some will also bring new value, e.g., an expert anal-
ysis of the images for a specific purpose. Each time an issue is
identified by one project or new information added, this has the
potential to improve the resources available to future projects. In
the absence of a pre-created perfect reference library, any project
will have to choose between using a resource such as this, with
the need for quality checks, and a much smaller but more dis-
cerning research-specific set if one is available or could be cre-
ated. With CT scans in particular, the radiation dosage makes
the reuse of existing imagery much more feasible.

To access the SMI dataset for a research project, please con-
tact eDRIS [17] in the first instance.

Availability of Source Code and Requirements

Snapshots of our code and other supporting data are openly
available in the GigaScience repository, GigaDB: https://dx.doi.
org/10.5524/100780

Project name: Research Data Management Platform
Project home page: https://github.com/HicServices/RDMP
Registration: biotools:rdmp RRID:SCR 016268
Synthetic data generation (used in integration testing):
https://github.com/HicServices/BadMedicine (EHR,
biotools:badmedicine, RRID:SCR 018879)
https://github.com/HicServices/BadMedicine.Dicom
(DICOM data component for the above)
Template building and relational database loading library:
https://github.com/HicServices/DicomTypeTranslation
(translation between DICOM types and database types,
also includes example modality templates: biotools:
dicomtypetranslation, RRID:SCR 018878)
https://github.com/HicServices/DicomTemplateBuilder
(GUI editor for building templates)
Imaging Repositories
https://github.com/HicServices/RdmpDicom (RDMP plugin
for imaging)
https://github.com/SMI/SmiServices (imaging microservices,
biotools:smi services, RRID:SCR 018881)
https://github.com/SMI/Integration (full stack testing for
microservices)
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Operating system(s): Windows (GUI) or Linux (console)
Programming language: C#
Other requirements: Microsoft SQL Server
License: GPL v3
No restrictions to use by non-academics.

Availability of Supporting Data and Materials

Other data, including links to additional information, further
supporting this work can be found in the GigaScience repository,
GigaDB [42].

Additional Files

Appendix A: Summary of requirements
Appendix B: Analysis of anonymisation tools
Appendix C: Summary of the hardware infrastructure
Appendix D: Use cases
Supplementary Table 1: Core functionality
Supplementary Table 2: User friendliness
Supplementary Table 3: Support
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