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Abstract. Technological advances are creating exciting new opportuni-
ties that have the potential to move HPC well beyond traditional com-
putational workloads. In this paper we focus on the potential for HPC to
be instrumental in responding to disasters such as wildfires, hurricanes,
extreme flooding, earthquakes, tsunamis, winter weather conditions, and
accidents. Driven by the VESTEC EU funded H2020 project, our re-
search looks to prove HPC as a tool not only capable of simulating dis-
asters once they have happened, but also one which is able to operate
in a responsive mode, supporting disaster response teams making urgent
decisions in real-time. Whilst this has the potential to revolutionise disas-
ter response, it requires the ability to drive HPC interactively, both from
the user’s perspective and also based upon the arrival of data. As such
interactivity is a critical component in enabling HPC to be exploited in
the role of supporting disaster response teams so that urgent decision
makers can make the correct decision first time, every time.

Keywords: Urgent decision making, Disaster response, Interactive HPC,
VESTEC

1 Introduction

The ability to perform faster than real-time simulations of large-scale situations
is becoming a reality due to the technological advances that computing, and
specifically HPC, has enjoyed over the past decade. This opens up a host of
opportunities including the ability to leverage HPC in the role of time-critical
decision support for unfolding emergency scenarios. However to do this one must
extend the state of the art in numerous fields such as in-situ HPC data analytics,
the assimilation and ingestion of data sources (e.g. from sensors measuring ac-
tual situational conditions), data reduction and statistical sampling for real-time
visualization.

The Visual Exploration and Sampling Toolkit for Extreme Computing (VESTEC)
project is exploring the fusion of HPC with real-time data for supporting urgent
decision makers in the role of disaster response. In this project we are concerned
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with three use-cases that drive our research in this area. The first one is the
spread of mosquito borne diseases, which is a major health challenge around
many parts of the world. This spread is heavily influenced by weather and cur-
rent mosquito conditions, so being able to combine real world mosquito reports,
accurate temperature values and short range weather forecasts is critical when
simulating how the spread will progress in the short to medium term.

The second VESTEC use-case is the progression of forest fires and the ability
to explore the impact of different response scenarios. Based on the successful
Wildfire Analyst application, this code is currently fed manually with data from
the field, but this is a labour intensive process generating extra work for the
disaster response teams and inducing a time lag on information, limiting the
real-time use of this tool. By automating the process it will make this things
far more dynamic, reduce the load on the operators and enable a much greater
quantity of data to be exploited in the simulation of wildfires. The third use-case
is that of space weather, for instance solar storms, which is very costly because
of the damage done to satellites. Whilst it is possible for satellites to be switched
off, thus protecting them, one needs prior warning and-so being able to ingest
the current space weather conditions and run this through simulation tools is a
very valuable proposition as it enables the estimation of risk to assets.

Whilst these three use-cases represent very different areas, all with novel chal-
lenges, there are a number of general similarities. All three involve the ingestion
of large volumes of data and, as it currently stands, all generate large volumes of
output data which is then processed offline by downstream tools. All use-cases
involve coupled simulations where a number of distinct codes must be executed
in a specific order, for example the execution of a high resolution weather model
before feeding the results into the mosquito borne diseases simulation. Lastly,
all models involve, to some extent, ensembles which need to be rapidly started
and stopped based on new data arriving unpredictably, and also steered by the
urgent decision maker.

In order to fully leverage HPC for disaster response, one must embrace the
interactive nature of these workflows, selecting the appropriate tools and tech-
niques to support how these technologies can support emergency decision makers
in their work. The rest of this paper is organised as follows, after briefly con-
sidering related work and background in Section 2, we then explore the role of
interactivity in Section 3 by considering the three main interactivity challenges
one faces when using HPC for urgent decision making. In Section 4 we explore
the role of cloud computing in urgent decision making before drawing conclusions
in Section 5.

2 Background and Related work

In Section 1 we highlighted the fact that the three VESTEC use-cases currently
write their data to disk for offline processing at some later point. When moving
to exploiting HPC in a more real-time urgent decision responsive mode, where
operators need the results ASAP, then the overhead of IO makes this offline
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analytics approach prohibitive. Therefore a logical starting point is to consider
the current state of the art in processing data from simulations in-situ. This is
illustrated in Figure 1, where cores of a processor are shared between compute
(C) and data analytics (D). The general idea is that a number of compute cores
are serviced by a data analytics core, and these compute cores fire and forget
their raw data over to the corresponding data core for analytics whilst the com-
putation proceeds. The major benefit of this is that the raw data is never written
to disk, thus avoiding the overhead of IO and the compute cores can continue to
work with data analytics proceeding concurrently. Typically this data analytics
involves some form of data reduction, or live visualisation.

Existing frameworks such as XIOS [3], Damaris [6], ADIOS [5], and MONC
[4] are examples of in-situ data analytics commonly used by HPC simulation
codes. While these approaches have proven effective and efficient at interleaving
data analytics with running simulations none of them do so in real-time, address
the issues of ensemble simulation or, most importantly, support the assimilation
and incorporation of new data into running simulations. These limitations are
key requirements for a system that is required to support urgent decision making
and, as such, one needs to go further than the current state of the art in in-situ
data analytics.

Fig. 1. In-situ data analytics, where cores are shared between computation and data
handling

More generally there have been previous attempts at using HPC for urgent
decision making. One such example was the SPRUCE project [1], which agreed
with machine owners a priori that their resource could be used to run urgent
workloads. Responders were given tokens which represented the amount of time
they had available on the specific machine for their workload. The solution was
somewhat more nuanced than this because a number of modes of access were
supported. These ranged from jobs submitted with some sort of priority in the
batch queue, all the way to forcibly terminating already running jobs and re-
placing them for with the urgent job. The more severe the mode, the more user
tokens were used up.
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However these previous uses of HPC for urgent decision making still involved
a batch processing model, where operators submit jobs, commonly with some
priority in the queue, and once these have completed the results are used to
inform response decisions. However this is not sufficient for our approach because,
to take advantage of the high velocity data and live data analytics methods which
are becoming commonplace, a much more interactive pattern must be embraced.
The traditional batch processing organisation, which has served classic HPC
workloads so well over many decades, is simply not appropriate here as we require
the execution of ensemble models driven by the unpredictable arrival of data and
chaining of HPC codes. This is further complicated by the fact that, in order
for the results to be of use to the disaster response team, these urgent jobs
must run within a specific bounded time. Furthermore, as simulations are then
progressing it is crucially important for a user to be able to interacting with
them and exploring numerous options and response techniques.

3 The role of interactivity

We believe that using HPC for urgent decision making requires interactivity in
three main areas:

1. User interaction with running simulations: gaining feedback as the
code is running and the ability to modify the simulation state and parameters
as it is executing

2. Dynamic ensemble simulations: where jobs can be started and stopped
on the fly. This is either driven directly by the user, or automatically based
on the arrival of sensor data

3. Supporting an interactive workload: where the arrival of new data, or
completion of another code, such as a weather model, automatically starts
new jobs

These three points are illustrated in Figure 2, where a central VESTEC sys-
tem connects data sources and disaster response teams, to HPC machines. Tak-
ing the Wildfire Analysist use-case as an example, it was highlighted in Section
2 that until now interaction with this code is manual, where first line respon-
ders have to explicitly start new simulations based upon updated information
they have received and entered. Instead, as per Figure 2, the ability to drive the
code dynamically, so that data is automatically picked up as it streams in and
leveraged according to some predefined rules, relieves considerable pressure from
the disaster response team and potentially results in much more accurate, up to
date, perspective of the situation.

In this section We explore the challenges and solutions associated with each of
these three components of interactivity in using HPC for urgent decision making.

3.1 Interacting with running simulations

At many GBs in size, the data generated by the codes involved in our three
use-cases is substantial and, as discussed in Section 2, it is already understood
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Fig. 2. Overview of interactivity involved in using HPC for urgent decision making

that, to enable efficient data processing, then an in-situ method, where the data
is handled as it is generated rather than written out to disk first, is crucial.
Furthermore, there is a requirement for feeding back from the user to the simu-
lation in order to modify the state on the fly as the code is running. The unique
requirements of urgent decision making means that driving this analysis and
interaction via a visual program is highly desirable and ParaView [7] is being
used for this in the VESTEC project.

ParaView [7] is an open source data analysis and visualisation application
used in many different application areas to analyze and visualize scientific data
sets. Designed as a framework, tools are provided to build visualisations appro-
priate to specific application data analytics and then exploration can be per-
formed interactively in 3D or via ParaView’s batch processing capabilities. Par-
aView supports execution over distributed memory and, as such, can handle very
large datasets, which is important in the context of disaster response. Under the
hood, ParaView uses the highly popular Visualization ToolKit (VTK) for graph-
ics rendering and Qt for windowing support. In this project we are combining
ParaView with Catalyst [8], an in-situ library which orchestrates the simulation
with analysis and/or visualization and connects to ParaView. A major benefit
of these tools is that the analysis and visualization tasks can be implemented in
a high level language such as Python or C++, or via the ParaView GUI.

The role of ParaView and Catalyst is illustrated in Figure 3, servicing a
number of ensemble simulations that are running on an HPC machine. These
ensembles are integrated with Catalyst and raw timestep data from each job
is passed to a user provided pipeline of analysis scripts which reduce it, for
instance via sampling. This reduced data is then transmitted to the ParaView
GUI, typically running on a client machine and connected by TCP/IP, but it can
also pick up files using the file system or run directly on the HPC machine and
be forwarded via X11. Depending on how the ParaView GUI has been set up
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Fig. 3. Example of the interaction with running ensembles

for the specific disaster response job, the user is able to provide feedback which,
via the Catalyst tool, is delivered to the appropriate ensemble job(s). Whilst the
simulation itself still needs to implement the specific details of how to process
the user’s feedback, using the Catalyst tool means that they do not need to be
concerned with the mechanism of how the feedback is delivered.

However, it is not just HPC technology that needs to be considered here,
as the data sizes involved mean that underlying data science and visualisation
techniques must also be addressed. For instance, the VESTEC project is also
researching novel data reduction techniques that support the identification of
topologically relevant features from individual simulation step data. This relies
on sampling raw data from topological proxies and then isolating the most rep-
resentative members from the ensembles and estimating the probabilities of the
appearance of specific features from this. Furthermore, graphical techniques such
as in-situ ray tracing, must also be further developed to support scalable image
generation and fast access to full-resolution simulation state.

3.2 Dynamic ensemble simulations

Previous research around using HPC for urgent decision making has identified
how important it is for simulations to be started quickly, rather than languish-
ing in the batch queue system [2]. Whilst using a dedicated machine for urgent
decision making might seem like an obvious choice, the relative rarity of these
disasters means that such a machine could be lightly used. Furthermore, the
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ability to run very large, high resolution jobs, is often desirable when it comes
to urgent decision workloads, and as such the use of existing HPC resources is
attractive. A common approach is to leverage queue priorities, such that jobs
submitted to specific queues will run first or even terminate currently running
jobs. However, this approach requires significant policy agreement with the indi-
vidual HPC machine operators, and the execution of urgent jobs will inevitably
cause disruption. This might not matter too much with previous urgent decision
approaches, which involved running a small number of jobs, but our approach
involves running ensemble simulations which can be started unpredictably based
on sensor data streaming in over time, meaning that many runs over a not in-
significant time period is likely.

In VESTEC we have adopted the idea of a central VESTEC server federat-
ing over many HPC machines as per Figure 2. This system periodically tracks
the utilisation of each HPC machine and, based upon this knowledge and the
specifics of the job, will submit to which ever machine is deemed most appro-
priate. Federation is entirely hidden from the end-user and, whilst specific HPC
machines might still employ further measures such as high priority queue which
the VESTEC system can be aware of, the load will be spread out across mul-
tiple supercomputers if a significant number of jobs need to be executed. Being
a European project, it is our vision that all the major supercomputers of Eu-
rope would eventually sign up to such a scheme, although for the purposes of
the VESTEC research project we are federating over a smaller number of HPC
machines to develop and prove the underlying concepts.

This approach solves another challenge in using HPC machines for urgent
decision making, which is that of resilience. Most general purpose HPC machines
simply do not operate with the guaranteed level of service availability required
for life saving workloads. Even those that currently do, such as the Met Office,
are fairly crude in their approach of relying on a hot backup machine which
will clear itself of jobs and run the main workload if a failure is detected in the
other machine. By contrast, in our approach the federator tracks which jobs are
submitted to which machine, and if a supercomputer fails then not only will
no more jobs be submitted to it, but also any queued or running jobs will be
automatically resubmitted elsewhere. All of this is transparent to the user and
more generally a single job might also be submitted to more than one machine
speculatively, either to guard against machine failure or to simply hedge bets
about which system will run the job first.

Of course there are still challenges involved and an open question is whether
this approach of polling machine status provides a level of control is fine grained
enough to fully support the execution of codes within a bounded time frame.
For instance, a major question which we are looking to answer in this project
is whether it will be possible to collect enough data and make accurate enough
predictions around machine state and queue times to provide this bounded exe-
cution time, or will some combination of special priority queues still be required
in the most critical of situations?
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Our federation approach does not get us entirely round the challenges of
machine policy either. For instance, many operators of supercomputers have
fairly strict policies around accounts and who may execute what. In some cases
it might not be possible to have a single VESTEC user per system as this could be
seen as account sharing which many systems disallow. Instead, individual users
might still need their own accounts on the machines and their credentials then
provided to VESTEC system for accessing the HPC machines on their behalf.
Whilst this is not a major blocker in the context of a research project, in order to
roll this approach out across very many machines, such as all supercomputers in
Europe which is our vision, then such challenges must be considered and solved.

3.3 Supporting an interactive workload

When it comes to an interactive workload there are two concerns to bear in mind.
Firstly, new data arriving from sensors must be processed in some manner, either
by performing preliminary analysis or feeding it directly into simulation runs.
Secondly, it is desirable to chain the running of simulation codes together, for
instance, the execution of a weather model first generates a forecast which is
then used by a simulation codes such as Wildfire Analyst, as details of the wind
significantly impact how forest fires progress. Both of these requirements need
to be handled in a way that requires minimal intervention from the already busy
front line responders.

We have identified that a workflow approach is appropriate here, where spe-
cific activities are performed and their status tracked. Once activities have com-
pleted then their results can be used to drive further activities as per a set
of predefined rules. Figure 4 illustrates an example workflow for the forest fire
use-case, where the arrival of new data will either update already running ensem-
ble simulations, or start new ones. This is further complicated by the fact that
the data might require pre-processing and new instances of the high resolution
weather model might need to be executed too, and the weather forecast results
provided to new instances of Wildfire Analyst.

Whilst there are very many workflow technologies available, arguably the two
most mature and ubiquitous are the Common Workflow Language (CWL) [10]
and Apache Taverna [11]. In fact CWL is not a specific technology per-se, but
instead a standard for describing workflows which numerous projects have im-
plemented. By contrast, Apache Taverna provides its own workflow description
language and ecosystem of tools such as GUIs for designing workflows. These
technologies have not grown from an HPC perspective and as such neither is
perfectly suited to our needs. When one considers the workflow in Figure 4, they
can observe a number of conditionals based on the state of the system or data.
However, CWL does not support conditional branching in the workflows directly,
so its ability to fully describe the workflows of our use-cases is limited. Apache
Taverna by contrast does have some support for conditionals in the workflow,
although this is not a commonly used feature, but Taverna is very heavy weight
and at the current time of writing uses a description interface which is cur-
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Fig. 4. Example workflow for executing or updating Wildfire Analyst in response to
the arrival of new data

rently non-standard and in flux as the technology matures and moves towards
full acceptance as an Apache project.

Therefore the approach we have adopted in the VESTEC project is to use
CWL, due to its standardised nature, but only use this to describe each indi-
vidual activity of the workflow and connect these using our own bespoke im-
plementation in the VESTEC system. Whilst this isn’t ideal, given the current
state of these technologies we believe it is the best work around and potentially
as these become more mature for HPC then we can move to standardising the
links between activities.

4 The role of the cloud

From the discussions in Section 3 it might seem to the reader that many of
the requirements for fusing real-time data with HPC for urgent decision making
overlap with those of cloud computing. Hence a natural question is whether the
adoption of some public cloud, such as Azure or AWS, could be appropriate
here. One could go even further and argue that much of the work we are doing
on the VESTEC system duplicates functionality already provided by the cloud,
for instance supporting elastic compute, and as such a cloud-first solution could
be more appropriate.

However, the cloud is not a silver bullet and there are specific limitations
that impact its overall suitability for this kind of high performance work load.
One such limitation is the fact that the user must set up the entirely of the
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infrastructure themselves and it is very easy to make decisions that, later down
the line, significantly limit performance. Whilst the compute power of the cloud
hardware and the interconnect is of high performance, selecting and configuring
an appropriate file system can be a major issue. As such, it can be challenging
to obtain high performance from codes that require significant IO, which is
common place in HPC and involves all three of our VESTEC use-cases. Whilst
high performance file-systems are often available on the cloud, these must be
setup and configured by the user which is complex and beyond the capabilities
of many users and developers. The common choice is to select a more common
parallel file-system technology, such as NFS, and whilst this is still a non-trivial
task to set up and configure, it is at-least doable in a realistic time frame.

Fig. 5. Performance comparison, in Site Updates Per Second (higher is better) of
HemeLB running on Cirrus, Azure and Azure with no IO

Figure 5 illustrates a performance comparison for HemeLB [9], a CFD code
based on the lattice Boltzmann method, on Cirrus which is a HPE/SGI 8600
HPC system (36 Broadwell cores per node, connected via InfiniBand), and Azure
(16 Haswell cores per node, connected via InfiniBand.) In this experiment we
have picked a domain based on a 3d rotational angiography scan of an anonymous
patient with a cerebral aneurysm being treated at the National Hospital for
Neurology and Neurosurgery in London, UK. The simulations are concerned
with modelling the region around the bifurcation of the internal carotid artery’s
bifurcation into the anterior cerebral artery and the middle cerebral artery and
the code is configured to use a block size of 8, block counts of 13, 26, and 27, and
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650492 total fluid sites. This code is not specifically part of one of the VESTEC
use-cases, but we believe that this application area would be applicable to using
HPC for urgent decision making in the future.

Whilst the processor technologies between Cirrus and Azure are different,
we can still observe patterns here and draw some conclusions. The Cirrus and
Azure runs are executing with IO in HemeLB enabled, whereas the Azure (no
IO) runs have had IO disabled at the application level. This last configuration,
over Azure with no IO, is the fastest and this is because of the absence of IO,
which adds some overhead to the code regardless. However it can be seen that
when enabling IO on Azure the performance very significantly decreases, 4.7
times slower at 576 cores. The performance on Cirrus with IO enabled is 3.4
times faster than that of Azure with IO enabled. Whilst the Xeon processors
are the next generation on Cirrus (Broadwell vs Haswell), we are still using the
exact same number of cores and when profiling the code in more detail we found
that the vast majority of this time difference was due to the overhead of IO on
the cloud.

Another benefit of the cloud is that of elasticity, where new VMs can be spun
up quickly rather than having to wait in a batch queue as per HPC machines.
However, clouds are not always as elastic as they might initially seem and prior
resource requests often have to be made ahead of time for significant amounts
of compute. When one considers that the cloud companies must still provision
the hardware and ensure that there is enough resource, then this isn’t hugely
surprising. It does however mean that requesting a very large amount of compute,
very infrequently and unpredictably, as would be the case with urgent decision
making for disaster response, is not what the cloud has been designed for.

There is also the question of cost and Figure 6 illustrates a cost comparison
between HemeLB running on Cirrus, Azure and Azure with no IO. The cost has
been normalised, so we can explore the different configurations from a cost per-
spective irrespective of performance. It is important to note that the costs quoted
here are the full cost for Cirrus, including support, but Azure configurations only
depict the cost of the VMs. Additional activities on the cloud after the job has
finished, such as data storage, ingress and egress will incur additional charges.
It can be seen that, running on Cirrus is consistently the cheapest option, being
2.7 times cheaper than Azure without any IO and over 12 times cheaper than
Azure with IO at 576 cores. The most costly configuration is that of Azure with
IO enabled and this is because of the additional file server support VMs that
must be stood up.

Whilst the numbers in Figures 5 and 6 illustrate the limitations of the cloud
for HPC workloads, the cloud does have a number of features which could be of
benefit in the use of computing for disaster response. Firstly, a cloud system could
be one of our target machines, with the VESTEC system then federating over
this exactly like the HPC machines. Secondly, we believe that some technologies
which are closely tied with the cloud, such as object stores, will be very applicable
to the technology solution employed by VESTEC.
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Fig. 6. Normalised cost (lower is better) comparison of running HemeLB running on
Cirrus, Azure and Azure with no IO
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In fact, in a way, the VESTEC system can be thought of a private cloud, with
machines that subscribe to this then providing the compute resource and our
VESTEC control system the overall marshaller. Whilst this does look different
to public clouds such as Azure and AWS, there is an overlap of requirements and
features, and whilst the implementation of these will by necessity be different,
it could be said that the ability to provide the flexibility of the cloud but within
the HPC space, is highly desirable for disaster response.

5 Conclusions

The use of HPC for urgent decision making is an exciting new domain for the
super-computing community. However there are numerous challenges and barri-
ers that need to be overcome in order for this to be a success, not least because
HPC machines, which traditionally favour throughput over individual job la-
tency, are not set up for this sort of workload. In this paper we have identified
three major challenges around interactivity that need to be addressed in order to
successfully use HPC for disaster response; interacting with running simulations,
dynamic ensemble control, and supporting an interactive workload.

The role of interactivity is crucial here and, whilst no existing technologies
are absolutely perfect, with further enhancements they can be made to work
together but the devil is in the detail in terms of how one actually achieves
this. It is clear that this effort requires expertise from across numerous domains,
from traditional simulation, to data analysis, to visualisation techniques, to real-
time computing, all these different components must be considered if we are to
transform disaster response.

We are currently building the VESTEC system and exploring the hypothesis
that by federating across multiple HPC machines, one addresses the limitations
of HPC for this type of workload. Whilst it involves significant effort to further
develop the tools, techniques and technologies, the potential payoff for the HPC
and disaster response communities is significant if we are successful.
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