212 research outputs found

    The Evolution of a Double Diffusive Magnetic Buoyancy Instability

    Get PDF
    Recently, Silvers, Vasil, Brummell, & Proctor (2009), using numerical simulations, confirmed the existence of a double diffusive magnetic buoyancy instability of a layer of horizontal magnetic field produced by the interaction of a shear velocity field with a weak vertical field. Here, we demonstrate the longer term nonlinear evolution of such an instability in the simulations. We find that a quasi two-dimensional interchange instability rides (or "surfs") on the growing shear-induced background downstream field gradients. The region of activity expands since three-dimensional perturbations remain unstable in the wake of this upward-moving activity front, and so the three-dimensional nature becomes more noticeable with time.Comment: 9 pages; 3 figures; accepted to appear in IAU symposium 27

    Quasi-cyclic behaviour in non-linear simulations of the shear dynamo

    Full text link

    Large-scale Dynamo Action Driven by Velocity Shear and Rotating Convection

    Full text link
    By incorporating a large-scale shear flow into turbulent rotating convection, we show that a sufficiently strong shear can promote dynamo action in flows that in the absence of shear do not act as dynamos. Our results are consistent with a dynamo driven by either the shear-current effect or by the interaction between a fluctuating α\alpha-effect and the velocity shear; they are though inconsistent with either a classical α2\alpha^2 or αω\alpha \omega mean field dynamo.Comment: 4 pages, 4 fig

    Theoretical study of pattern formation during the catalytic oxidation of CO on Pt{100} at low pressures

    Get PDF
    Theoretical studies have thus far been unable to model pattern formation during the reaction in this system on physically feasible length and time scales. In this paper, we derive a computational reaction-diffusion model for this system in which most of the input parameters have been determined experimentally. We model the surface on a mesoscopic scale intermediate between the microscopic size of CO islands and the macroscopic length scale of pattern formation. In agreement with experimental investigations [M. Eiswirth et al., Z. Phys. Chem., Neue Folge 144, 59 (1985)], the results from our model divide the CO and O-2 partial pressure parameter space into three regions defined by the level of CO coverage or the presence of sustained oscillations. We see CO fronts moving into oxygen-covered regions, with the 1 x 1 to hex phase change occurring at the leading edge. There are also traveling waves consisting of successive oxygen and CO fronts that move into areas of relatively high CO coverage, and in this case, the phase change is more gradual and of lower amplitude. The propagation speed of these reaction waves is similar to those observed experimentally for CO and oxygen fronts [H. H. Rotermund , J. Chem. Phys. 91, 4942 (1989); H. H. Rotermund , Nature (London) 343, 355 (1990); J. Lauterbach and H. H. Rotermund, Surf. Sci. 311, 231 (1994)]. In the two-dimensional version of our model, the traveling waves take the form of target patterns emitted from surface inhomogeneities.</p

    Destruction of large-scale magnetic field in non-linear simulations of the shear dynamo

    Get PDF
    The Sun's magnetic field exhibits coherence in space and time on much larger scales than the turbulent convection that ultimately powers the dynamo. In the past the α-effect (mean-field) concept has been used to model the solar cycle, but recent work has cast doubt on the validity of the mean-field ansatz under solar conditions. This indicates that one should seek an alternative mechanism for generating large-scale structure. One possibility is the recently proposed ‘shear dynamo’ mechanism where large-scale magnetic fields are generated in the presence of a simple shear. Further investigation of this proposition is required, however, because work has been focused on the linear regime with a uniform shear profile thus far. In this paper we report results of the extension of the original shear dynamo model into the nonlinear regime. We find that whilst large-scale structure can initially persist into the saturated regime, in several of our simulations it is destroyed via large increase in kinetic energy. This result casts doubt on the ability of the simple uniform shear dynamo mechanism to act as an alternative to the α-effect in solar conditions.This work was supported by the Science and Technology Facilities Council, grant ST/L000636/1.This is the author accepted manuscript. The final version is available from Oxford University Press via http://dx.doi.org/10.1093/mnras/stw49

    Forest Fruit Production Is Higher on Sumatra Than on Borneo

    Get PDF
    BACKGROUND: Various studies have shown that the population densities of a number of forest vertebrates, such as orangutans, are higher on Sumatra than Borneo, and that several species exhibit smaller body sizes on Borneo than Sumatra and mainland Southeast Asia. It has been suggested that differences in forest fruit productivity between the islands can explain these patterns. Here we present a large-scale comparison of forest fruit production between the islands to test this hypothesis. METHODOLOGY/PRINCIPAL FINDINGS: Data on fruit production were collated from Sumatran and Bornean sites. At six sites we assessed fruit production in three forest types: riverine, peat swamp and dryland forests. We compared fruit production using time-series models during different periods of overall fruit production and in different tree size classes. We examined overall island differences and differences specifically for fruiting period and tree size class. The results of these analyses indicate that overall the Sumatran forests are more productive than those on Borneo. This difference remains when each of the three forest types (dryland, riverine, and peat) are examined separately. The difference also holds over most tree sizes and fruiting periods. CONCLUSIONS/SIGNIFICANCE: Our results provide strong support for the hypothesis that forest fruit productivity is higher on Sumatra than Borneo. This difference is most likely the result of the overall younger and more volcanic soils on Sumatra than Borneo. These results contribute to our understanding of the determinants of faunal density and the evolution of body size on both islands

    Gpr124 is essential for blood-brain barrier integrity in central nervous system disease

    Get PDF
    Although blood-brain barrier (BBB) compromise is central to the etiology of diverse central nervous system (CNS) disorders, endothelial receptor proteins that control BBB function are poorly defined. The endothelial G-protein-coupled receptor (GPCR) Gpr124 has been reported to be required for normal forebrain angiogenesis and BBB function in mouse embryos, but the role of this receptor in adult animals is unknown. Here Gpr124 conditional knockout (CKO) in the endothelia of adult mice did not affect homeostatic BBB integrity, but resulted in BBB disruption and microvascular hemorrhage in mouse models of both ischemic stroke and glioblastoma, accompanied by reduced cerebrovascular canonical Wnt-β-catenin signaling. Constitutive activation of Wnt-β-catenin signaling fully corrected the BBB disruption and hemorrhage defects of Gpr124-CKO mice, with rescue of the endothelial gene tight junction, pericyte coverage and extracellular-matrix deficits. We thus identify Gpr124 as an endothelial GPCR specifically required for endothelial Wnt signaling and BBB integrity under pathological conditions in adult mice. This finding implicates Gpr124 as a potential therapeutic target for human CNS disorders characterized by BBB disruption
    • …
    corecore