56 research outputs found

    Understanding the Consumption of Antimicrobial Resistance–Related Content on Social Media: Twitter Analysis

    Get PDF
    Background: Antimicrobial resistance (AMR) is one of the most pressing concerns in our society. Today, social media can function as an important channel to disseminate information about AMR. The way in which this information is engaged with depends on a number of factors, including the target audience and the content of the social media post. Objective: The aim of this study is to better understand how AMR-related content is consumed on the social media platform Twitter and to understand some of the drivers of engagement. This is essential to designing effective public health strategies, raising awareness about antimicrobial stewardship, and enabling academics to effectively promote their research on social media. Methods: We took advantage of unrestricted access to the metrics associated with the Twitter bot @AntibioticResis, which has over 13,900 followers. This bot posts the latest AMR research in the format of a title and a URL link to the PubMed page for an article. The tweets do not contain other attributes such as author, affiliation, or journal. Therefore, engagement with the tweets is only affected by the words used in the titles. Using negative binomial regression models, we measured the impact of pathogen names in paper titles, academic attention inferred from publication counts, and general attention estimated from Twitter on URL clicks to AMR research papers. Results: Followers of @AntibioticResis consisted primarily of health care professionals and academic researchers whose interests comprised mainly AMR, infectious diseases, microbiology, and public health. Three World Health Organization (WHO) critical priority pathogens—Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacteriaceae—were positively associated with URL clicks. Papers with shorter titles tended to have more engagements. We also described some key linguistic characteristics that should be considered when a researcher is trying to maximize engagement with their publication. Conclusions: Our finding suggests that specific pathogens gain more attention on Twitter than others and that the levels of attention do not necessarily correspond to their status on the WHO priority pathogen list. This suggests that more targeted public health strategies may be needed to raise awareness about AMR among specific pathogens. Analysis of follower data suggests that in the busy schedules of health care professionals, social media offers a fast and accessible gateway to staying abreast of the latest developments in this field

    Oceanic evidence of climate change in southern Australia over the last three centuries

    Get PDF
    Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 31 (2004): L07212, doi:10.1029/2003GL018869.Chemical analysis of deepwater octocorals collected at 1000 m depth off southern Australia indicates long-term cooling, beginning in the mid-18th century. This cooling appears to reflect shoaling of isotherms along the continental shelf, that can be related statistically, observationally and by modeling to increasing coastal sea-surface temperatures, that in turn reflect a poleward extension of the SW Pacific boundary current (the East Australian Current). The oceanographic changes implied by the coral record suggest climate change in temperate Australia starting about the time of European settlement. Correlations between temperate Australian and Antarctic indices suggest these long-term changes might also be relevant to Antarctic climate.This study was supported by the Australian Fisheries and Research Development Corporation, the Australian Greenhouse Office, and the Land and Water Research Development Corporation

    SBML Level 3: an extensible format for the exchange and reuse of biological models

    Get PDF
    Abstract Systems biology has experienced dramatic growth in the number, size, and complexity of computational models. To reproduce simulation results and reuse models, researchers must exchange unambiguous model descriptions. We review the latest edition of the Systems Biology Markup Language (SBML), a format designed for this purpose. A community of modelers and software authors developed SBML Level 3 over the past decade. Its modular form consists of a core suited to representing reaction‐based models and packages that extend the core with features suited to other model types including constraint‐based models, reaction‐diffusion models, logical network models, and rule‐based models. The format leverages two decades of SBML and a rich software ecosystem that transformed how systems biologists build and interact with models. More recently, the rise of multiscale models of whole cells and organs, and new data sources such as single‐cell measurements and live imaging, has precipitated new ways of integrating data with models. We provide our perspectives on the challenges presented by these developments and how SBML Level 3 provides the foundation needed to support this evolution

    EXPORTS Measurements and Protocols for the NE Pacific Campaign

    Get PDF
    EXport Processes in the Ocean from Remote Sensing (EXPORTS) is a large-scale NASA-led and NSF co-funded field campaign that will provide critical information for quantifying the export and fate of upper ocean net primary production (NPP) using satellite information and state of the art technology

    A framework for human microbiome research

    Get PDF
    A variety of microbial communities and their genes (the microbiome) exist throughout the human body, with fundamental roles in human health and disease. The National Institutes of Health (NIH)-funded Human Microbiome Project Consortium has established a population-scale framework to develop metagenomic protocols, resulting in a broad range of quality-controlled resources and data including standardized methods for creating, processing and interpreting distinct types of high-throughput metagenomic data available to the scientific community. Here we present resources from a population of 242 healthy adults sampled at 15 or 18 body sites up to three times, which have generated 5,177 microbial taxonomic profiles from 16S ribosomal RNA genes and over 3.5 terabases of metagenomic sequence so far. In parallel, approximately 800 reference strains isolated from the human body have been sequenced. Collectively, these data represent the largest resource describing the abundance and variety of the human microbiome, while providing a framework for current and future studies

    Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility

    Get PDF

    On the relational dynamics of caring: a psychotherapeutic approach to emotional and power dimensions of women’s care work

    Get PDF
    Care is double-edged and paradoxical, inspiring a vast range of strong feelings in both care-givers and care-recipients. This paper draws on ideas about psychotherapeutic relationships to offer a theorisation of the complex emotional and power dynamics and imaginative geographies of care. Examining the humanistic approach developed by Carl Rogers as well as the psychoanalytic tradition, I advance an interpretation of psychotherapeutic practices that foregrounds the fundamental importance of the emotional and power-inflected relationship between practitioners and those with whom they work. I show how different traditions offer conceptualisations of the shape of therapeutic relationships that are highly relevant to consideration of the emotional and power dynamics of giving and receiving care. Against this background I discuss current debates about care, emotions and power, drawing especially on feminist and disability perspectives and arguing that psychotherapeutic approaches offer a powerful lens through which to understand the emotional and power dynamics of caring relationships. I conclude by emphasising how this theorisation helps to illuminate ubiquitous features of women’s care work

    SBML Level 3: an extensible format for the exchange and reuse of biological models

    Get PDF
    Systems biology has experienced dramatic growth in the number, size, and complexity of computational models. To reproduce simulation results and reuse models, researchers must exchange unambiguous model descriptions. We review the latest edition of the Systems Biology Markup Language (SBML), a format designed for this purpose. A community of modelers and software authors developed SBML Level 3 over the past decade. Its modular form consists of a core suited to representing reaction-based models and packages that extend the core with features suited to other model types including constraint-based models, reaction-diffusion models, logical network models, and rule-based models. The format leverages two decades of SBML and a rich software ecosystem that transformed how systems biologists build and interact with models. More recently, the rise of multiscale models of whole cells and organs, and new data sources such as single-cell measurements and live imaging, has precipitated new ways of integrating data with models. We provide our perspectives on the challenges presented by these developments and how SBML Level 3 provides the foundation needed to support this evolution
    • 

    corecore