905 research outputs found
STM and ab initio study of holmium nanowires on a Ge(111) Surface
A nanorod structure has been observed on the Ho/Ge(111) surface using
scanning tunneling microscopy (STM). The rods do not require patterning of the
surface or defects such as step edges in order to grow as is the case for
nanorods on Si(111). At low holmium coverage the nanorods exist as isolated
nanostructures while at high coverage they form a periodic 5x1 structure. We
propose a structural model for the 5x1 unit cell and show using an ab initio
calculation that the STM profile of our model structure compares favorably to
that obtained experimentally for both filled and empty states sampling. The
calculated local density of states shows that the nanorod is metallic in
character.Comment: 4 pages, 12 figures (inc. subfigures). Presented at the the APS March
meeting, Baltimore MD, 200
Reshaping graduate outcomes of science students – The contribution of undergraduate research experiences
Today’s science graduates require substantially different skills compared to yesterday’s graduates given the changing nature of modern science. As higher education institutions struggle to reform curricula and pedagogy, undergraduate research experiences (UREs) are increasingly being incorporated to enhance undergraduate science curricula. This study is situated within a traditional Bachelor of Science degree that offers students some voluntary opportunities to participate in UREs. This study explores two graduating science cohorts (n=272), comparing those who did and did not participate in UREs. A survey investigated student perceptions (importance, confidence and improvements) of five graduate outcomes in the context of science: writing skills, communication skills, quantitative skills (QS), teamwork skills and content knowledge. Cross-tabs and a linear discriminant analysis were used to investigate perception change between the two groups. The notable differences in perception scores in this study were consistently higher in QS, perhaps indicative of UREs emphasising the need for such skills in science or from students gaining increased confidence as a result of utilising QS within an authentic context. Our results reveal little difference in other student outcome areas, which raises questions around the role of UREs as a broad strategy for enhancing the achievement of graduate outcomes in science. This study is limited to a single institution and is focused on specific graduate outcomes, so only limited conclusions can be drawn. However, further research to determine the graduate outcomes gained from UREs would benefit the sector, particularly science disciplines, in the changing focus of government policy on student learning outcomes
Recommended from our members
Special Procedures in the Digital Age
In this chapter, the authors outline the implications of information and communication technologies (ICTs) for Special Procedures' working methods to protect and promote human rights. They focus in particular on mandate holders' formal communications, though many implications of the use of ICTs apply more broadly to Special Procedures' work. The communications mechanism allows victims or those acting on their behalf to submit petitions documenting human rights violations to Special Procedures, who then evaluate these submissions and convert those deemed actionable into confidential communications to implicated States. ICTs have the potential to transform the communications mechanism by supporting Special Rapporteurs in raising awareness of their mandates and by providing a broader range of channels for victims to submit complaints. With these opportunities, however, come risks that are both familiar and unprecedented in their extent - including those related to inequality, security, verification, and trust. In this chapter, the authors overview ICTs' implications for each stage of the communications mechanism and make recommendations for Special Procedures on how they might mitigate associated risks. They conclude that the system would benefit from further judicious investment in digital literacy.This work was supported by the Economic and Social Research
Council (grant number ES/K009850/1) and by the Isaac Newton Trust
Effect of disorder on the vortex-lattice melting transition
We use a three dimensional stacked triangular network of Josephson junctions
as a model for the study of vortex structure in the mixed state of high Tc
superconductors. We show that the addition of disorder destroys the first order
melting transition occurring for clean samples. The melting transition splits
in two different (continuous) transitions, ocurring at temperatures Ti and Tp
(>Ti). At Ti the perpendicular-to-field superconductivity is lost, and at Tp
the parallel-to-field superconductivity is lost. These results agree well with
recent experiments in YBaCuO.Comment: 4 pages + 2 figure
Structural studies into the spin crossover behaviour of Fe(abpt)2(NCS)2 polymorphs B and D
The spin-crossover behaviour of [Fe(abpt)2(NCS)2] (abpt = 4-amino-3,5-bis(pyridin-2-yl)-1,2,4-triazole) polymorphs B and D has been studied using single crystal X-ray diffraction to monitor changes in structural features. High pressure single crystal measurements on polymorph B showed that it underwent a monoclinic P21/n (Z′ = 0.5) to triclinic P-1 (Z′ = 2 × 0.5) phase transition between 11.5 and 13.5 kbar, at which point it also starts to undergo a thermally inaccessible spin crossover. In polymorph D which also crystallises in the mononclinic space group P21/n (Z′ = 2 × 0.5) one of the unique Fe centres undergoes a thermal spin transition. It also displays light-induced excited spin-state trapping (LIESST), and a structure has been obtained at 30 K through continuous irradiation with a 670 nm 5 mW CW laser. In addition high pressure single crystal measurements on polymorph D showed a stepped pressure induced spin transition. At ∼9.6 kbar one of the unique Fe centres had undergone a spin transition and by ∼15 kbar both of the unique Fe centres are shown to be essentially low spin, a situation that is thermally inaccessible. Crystallographic data were collected for both polymorphs using variable temperature or high pressure single crystal X-ray diffraction to allow changes in cell parameters, bond lengths and distortion parameters to be monitored for the spin crossover or phase transition
Ultra-low temperature structure determination of a Mn12 single-molecule magnet and the interplay between lattice solvent and structural disorder
We have determined the ultra-low temperature crystal structure of the archetypal single-molecule magnet (SMM) [Mn12O12(O2CMe)16(H2O)4]·4H2O·2MeCO2H (1) at 2 K, by using a combination of single-crystal X-ray and single-crystal neutron diffraction. This is the first structural study of any SMM in the same temperature regime where slow magnetic relaxation occurs. We reveal an additional hydrogen bonding interaction between the {Mn12} cluster and its solvent of crystallisation, which shows how the lattice solvent transmits disorder to the acetate ligands in the {Mn12} complex. Unusual quantum properties observed in 1 have long been attributed to disorder. Hence, we studied the desolvation products of 1, in order to understand precisely the influence of lattice solvent on the structure of the cluster. We present two new axially symmetric structures corresponding to different levels of desolvation of 1, [Mn12O12(O2CMe)16(H2O)4]·4H2O (2) and [Mn12O12(O2CMe)16(H2O)4] (3). In 2, removal of acetic acid of crystallisation largely resolves positional disorder in the affected acetate ligands, whereas removal of lattice water molecules further resolves the acetate ligand disorder in 3. Due to the absence of acetic acid of crystallisation, both 2 and 3 have true, unbroken S4 symmetry, showing for the first time that it is possible to prepare fully axial Mn12–acetate analogues from 1, via single-crystal to single-crystal transformations
- …