5 research outputs found

    Comparison of pilot effective time delay for cockpit controllers used on space shuttle and conventional aircraft

    Get PDF
    A study was conducted at the Dryden Flight Research Facility of NASA Ames Research Center (Ames-Dryden) to compare pilot effective time delay for the space shuttle rotational hand controller with that for conventional stick controllers. The space shuttle controller has three degrees of freedom and nonlinear gearing. The conventional stick has two degrees of freedom and linear gearing. Two spring constants were used, allowing the conventional stick to be evaluated in both a light and a heavy configuration. Pilot effective time delay was obtained separately for pitch and roll through first-order, closed-loop, compensatory tracking tasks. The tasks were implemented through the space shuttle cockpit simulator and a critical task tester device. A total of 900 data runs were made using four test pilots and one nonpilot (engineer) for two system delays in pitch and roll modes. Results showed that the heavier conventional control stick had the lowest pilot effective time delays. The light conventional control stick had pilot effective time delays similar to those of the shuttle controller. All configurations showed an increase in pilot effective time delay with an increase in total system delay

    Measurements of Pilot Time Delay as Influenced by Controller Characteristics and Vehicles Time Delays

    Get PDF
    A study to measure and compare pilot time delay when using a space shuttle rotational hand controller and a more conventional control stick was conducted at NASA Ames Research Center's Dryden Flight Research Facility. The space shuttle controller has a palm pivot in the pitch axis. The more conventional controller used was a general-purpose engineering simulator stick that has a pivot length between that of a typical aircraft center stick and a sidestick. Measurements of the pilot's effective time delay were obtained through a first-order, closed-loop, compensatory tracking task in pitch. The tasks were implemented through a space shuttle cockpit simulator and a critical task tester device. The study consisted of 450 data runs with four test pilots and one nonpilot, and used three control stick configurations and two system delays. Results showed that the heavier conventional stick had the lowest pilot effective time delays associated with it, whereas the shuttle and light conventional sticks each had similar higher pilot time delay characteristics. It was also determined that each control stick showed an increase in pilot time delay when the total system delay was increased

    Trophic Ecology of Atlantic Bluefin Tuna (Thunnus thynnus) Larvae from the Gulf of Mexico and NW Mediterranean Spawning Grounds: A Comparative Stable Isotope Study

    Get PDF
    The present study uses stable isotopes of nitrogen and carbon (δ15Nandδ13C) as trophic indicators for Atlantic bluefin tuna larvae (BFT) (6–10mm standard length) in the highly contrasting environmental conditions of the Gulf of Mexico (GOM) and the Balearic Sea (MED). These regions are differentiated by their temperature regime and relative productivity, with the GOM being significantly warmer and more productive. MED BFT larvae showed the highest δ15N signatures, implying an elevated trophic position above the underlyingmicrozooplankton baseline. Ontogenetic dietary shifts were observed in the BFT larvae from the GOM and MED which indicates early life trophodynamics differences between these spawning habitats. Significant trophic differences between the GOM and MED larvae were observed in relation to δ15N signatures in favour of the MED larvae, which may have important implications in their growth during their early life stages. These low δ15N levels in the zooplankton from the GOM may be an indication of a shifting isotopic baseline in pelagic food webs due to diatrophic inputs by cyanobacteria. Lack of enrichment for δ15N in BFT larvae compared to zooplankton implies an alternative grazing pathway from the traditional food chain of phytoplankton— zooplankton—larval fish. Results provide insight for a comparative characterization of the trophic pathways variability of the two main spawning grounds for BFT larvaeVersión del editor4,411
    corecore