36 research outputs found

    Analysis of factors that contribute to and interfere with bactericidal properties of low-temperature atmospheric pressure plasmas

    Get PDF
    Bacterial resistance to antibiotics continues to be a significant concern globally. In the search for more effective antibacterial treatments, low temperature plasmas (LTPs) have arisen as an attractive alternative to traditional therapies. LTPs generate a cocktail of reactive nitrogen and oxygen species (RNOS), ultraviolet (UV) photons, electrons and electromagnetic fields. They therefore offer the potential to facilitate the localised delivery of bactericidal agents without contact to the treatment site. However, whether the distribution of RNOS in the gas phase, the presence of organic matter during treatment and the heterogeneity of bacterial populations affect the treatment outcome was unknown. Single-cell analysis was undertaken throughout to investigate the heterogeneous response of the model system Salmonella enterica to treatment with atmospheric-pressure plasma jets. In conjunction with the electrical, optical, and chemical studies, this enabled key mechanisms that drive plasma-bacteria interactions to be explored. My research has demonstrated three main points: (a) The level of DNA damage induced in single cells is determined by the spatial distribution of RNOS in the plasma effluent. This was found to be a characteristic of LTPs generated in open air. (b) The contribution of UV radiation solely to bacterial elimination and induction of DNA damage is minimal. Therefore, the bactericidal action of LTPs can be ascribed to the RNOS generated in the plasma, although the role of charged species and electric fields cannot be ruled out. (c) Preferential redox reactions between plasma-generated RNOS and external biomolecules in the environment decrease the efficacy of the treatment. This study evidences the importance of the aforementioned conditions for the development of successful antimicrobial plasma therapies. It highlights the usefulness of single cell analysis to assess heterogeneous responses in a bacterial population in response to LTPs treatments. These results were made possible only due to interdisciplinary quantitative approaches used in this project

    Spatial Dependence of DNA Damage in Bacteria due to Low-Temperature Plasma Application as Assessed at the Single Cell Level

    Get PDF
    Low temperature plasmas (LTPs) generate a cocktail of reactive nitrogen and oxygen species (RNOS) with bactericidal activity. The RNOS however are spatially unevenly distributed in the plasma. Here we test the hypothesis that this distribution will affect the mechanisms underpinning plasma bactericidal activity focussing on the level of DNA damage in situ. For the first time, a quantitative, single cell approach was applied to assess the level of DNA damage in bacteria as a function of the radial distance from the centre of the plasma jet. Salmonella enterica on a solid, dry surface was treated with two types of LTP: an atmospheric-pressure dielectric barrier discharge plasma jet (charged and neutral species) and a radio-frequency atmospheric-pressure plasma jet (neutral species). In both cases, there was an inverse correlation between the degree of DNA damage and the radial distance from the centre of the plasma, with the highest DNA damage occurring directly under the plasma. This trend was also observed with Staphylococcus aureus. LTP-generated UV radiation was eliminated as a contributing factor. Thus valuable mechanistic information can be obtained from assays on biological material, which can inform the development of LTP as a complementary or alternative therapy for (topical) bacterial infections

    Cold Atmospheric Plasma Increases Temozolomide Sensitivity of Three-Dimensional Glioblastoma Spheroids via Oxidative Stress-Mediated DNA Damage

    No full text
    Glioblastoma multiforme (GBM) is the most frequent and aggressive primary malignant brain tumor in adults. Current standard radiotherapy and adjuvant chemotherapy with the alkylating agent temozolomide (TMZ) yield poor clinical outcome. This is due to the stem-like properties of tumor cells and genetic abnormalities in GBM, which contribute to resistance to TMZ and progression. In this study, we used cold atmospheric plasma (CAP) to enhance the sensitivity to TMZ through inhibition of antioxidant signaling (linked to TMZ resistance). We demonstrate that CAP indeed enhances the cytotoxicity of TMZ by targeting the antioxidant specific glutathione (GSH)/glutathione peroxidase 4 (GPX4) signaling. We optimized the threshold concentration of TMZ on five different GBM cell lines (U251, LN18, LN229, U87-MG and T98G). We combined TMZ with CAP and tested it on both TMZ-sensitive (U251, LN18 and LN229) and TMZ-resistant (U87-MG and T98G) cell lines using two-dimensional cell cultures. Subsequently, we used a three-dimensional spheroid model for the U251 (TMZ-sensitive) and U87-MG and T98G (TMZ-resistant) cells. The sensitivity of TMZ was enhanced, i.e., higher cytotoxicity and spheroid shrinkage was obtained when TMZ and CAP were administered together. We attribute the anticancer properties to the release of intracellular reactive oxygen species, through inhibiting the GSH/GPX4 antioxidant machinery, which can lead to DNA damage. Overall, our findings suggest that the combination of CAP with TMZ is a promising combination therapy to enhance the efficacy of TMZ towards the treatment of GBM spheroids

    Modifying the tumour microenvironment : challenges and future perspectives for anticancer plasma treatments

    No full text
    Tumours are complex systems formed by cellular (malignant, immune, and endothelial cells, fibroblasts) and acellular components (extracellular matrix (ECM) constituents and secreted factors). A close interplay between these factors, collectively called the tumour microenvironment, is required to respond appropriately to external cues and to determine the treatment outcome. Cold plasma (here referred as ‘plasma’) is an emerging anticancer technology that generates a unique cocktail of reactive oxygen and nitrogen species to eliminate cancerous cells via multiple mechanisms of action. While plasma is currently regarded as a local therapy, it can also modulate the mechanisms of cell-to-cell and cell-to-ECM communication, which could facilitate the propagation of its effect in tissue and distant sites. However, it is still largely unknown how the physical interactions occurring between cells and/or the ECM in the tumour microenvironment affect the plasma therapy outcome. In this review, we discuss the effect of plasma on cell-to-cell and cell-to-ECM communication in the context of the tumour microenvironment and suggest new avenues of research to advance our knowledge in the field. Furthermore, we revise the relevant state-of-the-art in three-dimensional in vitro models that could be used to analyse cell-to-cell and cell-to-ECM communication and further strengthen our understanding of the effect of plasma in solid tumours
    corecore