793 research outputs found

    Quantum plasmonic waveguides: Au nanowires

    Full text link
    Combining miniaturization and good operating speed is a compelling yet crucial task for our society. Plasmonic waveguides enable the possibility of carrying information at optical operating speed while maintaining the dimension of the device in the nanometer range. Here we present a theoretical study of plasmonic waveguides extending our investigation to structures so small that Quantum Size Effects (QSE) become non negligible, namely quantum plasmonic waveguides. Specifically, we demonstrate and evaluate a blue-shift in Surface Plasmon (SP) resonance energy for an ultra-thin gold nanowire

    Magneto-optical characterization of MnxGe1-x alloys obtained by ion implantation

    Full text link
    Magneto-optical Kerr effect hysteresis loops at various wavelengths in the visible/near-infrared range have been used to characterize the magnetic properties of alloys obtained by implanting Mn ions at fixed energy in a Ge matrix. The details of the hysteresis loops reveal the presence of multiple magnetic contributions. They may be attributed to the inhomogeneous distribution of the magnetic atoms and, in particular, to the known coexistence of diluted Mn in the Ge matrix and metallic Mn-rich nanoparticles embedded in it [Phys. Rev. B 73, 195207(2006)].Comment: 2 pages, 2 figures. Proceeding of the International Conference on Magnetism. Kyoto, August 20-25 200

    Temperature dependence and quenching processes of the intra-4f luminescence of Er in crystalline Si

    Get PDF
    8 págs.; 7 figs.The luminescence quenching of Er in crystalline Si at temperatures between 77 and 300 K is investigated. Samples were prepared by solid-phase epitaxy of Er-implanted amorphous Si layers with or without O codoping. After epitaxial regrowth at 620°C, thermal annealing at 900°C for 30 sec was performed in order to eliminate residual defects in the regrown layer and electrically and optically activate the Er ions. Measurements of photoluminescence intensity and time decay were performed as a function of temperature and pump power. By increasing the temperature from 77 K to room temperature the luminescence intensity decreases by ~ three orders of magnitude in the Er-doped sample without O codoping, but only by a factor of 30 in the O-doped sample. In this sample room-temperature photo-luminescence and electroluminescence have been observed. Time-decay curves show a fast initial decay (~100 ¿sec) followed by a slow decay (~1 msec), with the relative intensity of these two components depending on temperature, pump power, and O codoping. The decay curves can be fitted by a sum of two exponential functions revealing the existence, in both samples, of two different classes of optically active Er sites. The concentration of excitable sites belonging to the slow-decaying class is similar for the samples with or without O codoping and rapidly decreases when temperature is increased. At temperatures above 150 K the Er luminescence is dominated by the fast-decaying centers the concentration of which is greatly increased by the presence of O. It is found that in the absence of oxygen room-temperature luminescence is hampered by the limited amount of excitable Er ions. In contrast, in O-doped samples the nonradiative decay of excited Er is the main quenching mechanism. The main factors determining the temperature quenching of Er luminescence and the crucial role of oxygen are discussed. © 1994 The American Physical Society.This work has been partially supported by GNSM-CNR. Work at the FOM Institute is part of the research program of the foundation for Fundamental Research on Matter (FOM), and was made possible by financial support from the Dutch organization for the Advancement of Research (NWO}, the Foundation for Technical Research (STW}, and the IC Technology Program (IOP Electro-optics) of the Ministry of Economic Affairs.Peer Reviewe

    A model for the onset of transport in systems with distributed thresholds for conduction

    Full text link
    We present a model supported by simulation to explain the effect of temperature on the conduction threshold in disordered systems. Arrays with randomly distributed local thresholds for conduction occur in systems ranging from superconductors to metal nanocrystal arrays. Thermal fluctuations provide the energy to overcome some of the local thresholds, effectively erasing them as far as the global conduction threshold for the array is concerned. We augment this thermal energy reasoning with percolation theory to predict the temperature at which the global threshold reaches zero. We also study the effect of capacitive nearest-neighbor interactions on the effective charging energy. Finally, we present results from Monte Carlo simulations that find the lowest-cost path across an array as a function of temperature. The main result of the paper is the linear decrease of conduction threshold with increasing temperature: Vt(T)=Vt(0)(14.8kBTP(0)/pc)V_t(T) = V_t(0) (1 - 4.8 k_BT P(0)/ p_c) , where 1/P(0)1/P(0) is an effective charging energy that depends on the particle radius and interparticle distance, and pcp_c is the percolation threshold of the underlying lattice. The predictions of this theory compare well to experiments in one- and two-dimensional systems.Comment: 14 pages, 10 figures, submitted to PR

    Hydrogen induced optically-active defects in silicon photonic nanocavities

    Get PDF
    This work was supported by Era-NET NanoSci LECSIN project coordinated by F. Priolo, by the Italian Ministry of University and Research, FIRB contract No. RBAP06L4S5 and by the EPSRC UKSp project. Partial financial support by the Norwegian Research Council is also acknowledged.We demonstrate intense room temperature photoluminescence (PL) from optically active hydrogen- related defects incorporated into crystalline silicon. Hydrogen was incorporated into the device layer of a silicon on insulator (SOI) wafer by two methods: hydrogen plasma treatment and ion implantation. The room temperature PL spectra show two broad PL bands centered at 1300 and 1500 nm wavelengths: the first one relates to implanted defects while the other band mainly relates to the plasma treatment. Structural characterization reveals the presence of nanometric platelets and bubbles and we attribute different features of the emission spectrum to the presence of these different kind of defects. The emission is further enhanced by introducing defects into photonic crystal (PhC) nanocavities. Transmission electron microscopy analyses revealed that the isotropicity of plasma treatment causes the formation of a higher defects density around the whole cavity compared to the ion implantation technique, while ion implantation creates a lower density of defects embedded in the Si layer, resulting in a higher PL enhancement. These results further increase the understanding of the nature of optically active hydrogen defects and their relation with the observed photoluminescence, which will ultimately lead to the development of intense and tunable crystalline silicon light sources at room temperature.Publisher PDFPeer reviewe

    Fatty acid profile in the ruminal fluid and in the m. longissimus dorsi of lambs fed herbage or concentrate with or without tannins

    Get PDF
    Twenty-eight male lambs were divided into two groups at age 45 d. Fourteen lambs were given fresh herbage (vetch); the remaining lambs were fed a concentrate-based diet. Within each treatment, seven lambs received a supplementation of quebracho tannins. At slaughter (age 105 d) the ruminal content and the muscle longissimus dorsi (LD) were collected. Ruminal fluid and LD fatty acid composition was determined by gas chromatography. Among the concentrates-fed lambs, tannins supplementation reduced (P < 0.05) the concentration of C18:0 (- 49 %) and increased vaccenic acid (VA; + 69 %) in the ruminal fluid. When tannins were included into the concentrate, the LD contained double levels of rumenic acid (RA) as compared to the LD of the lambs fed the tannins-free concentrate (0.96 vs. 0.46 % of total extracted fatty acids, respectively; P < 0.05). The concentration of PUFA was higher (P < 0.05) and SFA (P < 0.01) lower in the LD from lambs fed the tannin diets as compared to the animals receiving the tannin-free diets. In conclusion, tannins reduce the biohydrogenation of the PUFA in the rumen. This implies that tannins supplementation could be a strategy to increase the RA and PUFA content and to reduce the SFA into ruminant meats

    Bevacizumab in the treatment of NSCLC: patient selection and perspectives

    Get PDF
    Non-small-cell lung cancer (NSCLC) represents about 85% of all lung cancers, and more than half of NSCLCs are diagnosed at an advanced stage. Chemotherapy has reached a plateau in the overall survival curve of about 10 months. Therefore, in last decade novel targeted approaches have been developed to extend survival of these patients, including antiangiogenic treatment. Vascular endothelial growth factor (VEGF) signaling pathway plays a dominant role in stimulating angiogenesis, which is the main process promoting tumor growth and metastasis. Bevacizumab (bev; Avastin®) is a recombinant humanized monoclonal antibody that neutralizes VEGF’s biologic activity through a steric blocking of its binding with VEGF receptor. Currently, bev is the only antiangiogenic agent approved for the first-line treatment of advanced or recurrent nonsquamous NSCLC in “bev-eligible� patients. The ineligibility to receive bev is related to its toxicity. In the pivotal trials of bev in NSCLC, fatal bleeding events including pulmonary hemorrhage were observed with rates higher in the chemotherapy-plus-bev group. Therefore, in order to reduce the incidence of severe pulmonary hemorrhage, numerous exclusion criteria have been characteristically applied for bev such as central tumor localization or tumor cavitation, use of anticoagulant therapy, presence of brain metastases, age of patients (elderly). Subsequent studies designed to evaluate the safety of bev have demonstrated that this agent is safe and well tolerated even in those patients subpopulations excluded from pivotal trials. This review outlines the current state-of-the-art on bev use in advanced NSCLC. It also describes patient selection and future perspectives on this antiangiogenic agent

    Photonic Torque Microscopy of the Nonconservative Force Field for Optically Trapped Silicon Nanowires

    Get PDF
    We measure, by photonic torque microscopy, the nonconservative rotational motion arising from the transverse components of the radiation pressure on optically trapped, ultrathin silicon nanowires. Unlike spherical particles, we find that nonconservative effects have a significant influence on the nanowire dynamics in the trap. We show that the extreme shape of the trapped nanowires yields a transverse component of the radiation pressure that results in an orbital rotation of the nanowire about the trap axis. We study the resulting motion as a function of optical power and nanowire length, discussing its size-scaling behavior. These shape-dependent nonconservative effects have implications for optical force calibration and optomechanics with levitated nonspherical particles

    Dual Effect of Methylprednsolone Pulses on Apoptosis of Peripheral Leukocytes in Patients with Renal Diseases

    Get PDF
    It is well known that change in apoptosis may modulate the natural story of illness, and that many drugs may act through modulation of apoptosis, but the role of steroids in acting through apoptosis in different settings, including renal diseases, has still to be elucidated. We studied the in vivo effects of steroids by oral assumption (10 to 25 mg/deltacortene) or by intravenous pulses (300 to 1000 mg/dose) on apoptosis and cellular subsets of peripheral lymphocytes, by evaluating DNA-fragmentation and lymphocyte subsets in 79 subjects: 22 controls and 57 patients with various renal diseases (25 Lupus-GN, 19 membranous-GN (MGN), 6 rapidly progressive-GN (RPGN), 2 acute interstitial nephritis (AIN), 5 on chronic dialysis. Baseline apoptosis was present in 1/22 (4.5%) of controls, 3/25 (12%) SLE, 2/6 (33.3%) RPGN and 10/19 (52.6%) MGN. A significant decrease in CD3+CD8+ cell count and a significant increase of the CD3+CD4/CD3+CD8+ ratio were found in apoptosis-positive subjects. DNA fragmentation did not change after oral steroids, paralleling a 22 to 32% decrease in total lymphocytes. Following intravenous methylprednisolone pulses, a deeper drop of all lymphocyte subsets was observed, while DNA fragmentation turned from present to absent in 2 MGN, but not in 2 RPGN, and from absent to present in 1 ARF and 1 SLE, independently of the dosage. We demonstrated that the presence of apoptosis in renal diseases is associated with decreased CD3+CD8+ cell count. Furthermore, steroid intravenous pulses, besides inducing a profound decrease in lymphocyte subsets, do exert a dual effect on baseline leukocyte apoptosis, eventually leading to a reversal of baseline patterns, either turning from negative to positive or from positive to negative. Oral steroid therapy did not influence baseline apoptosis

    Experimental quantification of useful and parasitic absorption of light in plasmon-enhanced thin silicon films for solar cells application

    Get PDF
    A combination of photocurrent and photothermal spectroscopic techniques is applied to experimentally quantify the useful and parasitic absorption of light in thin hydrogenated microcrystalline silicon (μc-Si:H) films incorporating optimized metal nanoparticle arrays, located at the rear surface, for improved light trapping via resonant plasmonic scattering. The photothermal technique accounts for the total absorptance and the photocurrent signal accounts only for the photons absorbed in the μc-Si:H layer (useful absorptance); therefore, the method allows for independent quantification of the useful and parasitic absorptance of the plasmonic (or any other) light trapping structure. We demonstrate that with a 0.9 μm thick absorber layer the optical losses related to the plasmonic light trapping in the whole structure are insignificant below 730 nm, above which they increase rapidly with increasing illumination wavelength. An average useful absorption of 43% and an average parasitic absorption of 19% over 400-1100 nm wavelength range is measured for μc-Si:H films deposited on optimized self-assembled Ag nanoparticles coupled with a flat mirror (plasmonic back reflector). For this sample, we demonstrate a significant broadband enhancement of the useful absorption resulting in the achievement of 91% of the maximum theoretical Lambertian limit of absorption
    corecore