911 research outputs found

    Superlattice properties of carbon nanotubes in a transverse electric field

    Get PDF
    Electron motion in a (n,1) carbon nanotube is shown to correspond to a de Broglie wave propagating along a helical line on the nanotube wall. This helical motion leads to periodicity of the electron potential energy in the presence of an electric field normal to the nanotube axis. The period of this potential is proportional to the nanotube radius and is greater than the interatomic distance in the nanotube. As a result, the behavior of an electron in a (n,1) nanotube subject to a transverse electric field is similar to that in a semiconductor superlattice. In particular, Bragg scattering of electrons from the long-range periodic potential results in the opening of gaps in the energy spectrum of the nanotube. Modification of the bandstructure is shown to be significant for experimentally attainable electric fields, which raises the possibility of applying this effect to novel nanoelectronic devices.Comment: 7 pages, 3 figure

    Three-Dimensionally Confined Optical Modes in Quantum Well Microtube Ring Resonators

    Full text link
    We report on microtube ring resonators with quantum wells embedded as an optically active material. Optical modes are observed over a broad energy range. Their properties strongly depend on the exact geometry of the microtube along its axis. In particular we observe (i) preferential emission of light on the inside edge of the microtube and (ii) confinement of light also in direction of the tube axis by an axially varying geometry which is explained in an expanded waveguide model.Comment: 5 pages, 4 figure

    Maximum Metallic Conductivity in Si-MOS Structures

    Full text link
    We found that the conductivity of the two-dimensional electron system in Si-MOS structures is limited to a maximum value, G_{max}, as either density increases or temperature decreases. This value G_{max} is weakly disorder dependent and ranging from 100 to 140 e^2/h for samples whose mobilities differ by a factor of 4.Comment: 3 pages, 3 ps-figs, RevTex, new dat

    Quantum Dot as Spin Filter and Spin Memory

    Full text link
    We consider a quantum dot in the Coulomb blockade regime weakly coupled to current leads and show that in the presence of a magnetic field the dot acts as an efficient spin-filter (at the single-spin level) which produces a spin-polarized current. Conversely, if the leads are fully spin-polarized the up or down state of the spin on the dot results in a large sequential or small cotunneling current, and thus, together with ESR techniques, the setup can be operated as a single-spin memory.Comment: 4 pages, 3 figures, REVTe

    Cylindrical Two-Dimensional Electron Gas in a Transverse Magnetic Field

    Get PDF
    We compute the single-particle states of a two-dimensional electron gas confined to the surface of a cylinder immersed in a magnetic field. The envelope-function equation has been solved exactly for both an homogeneous and a periodically modulated magnetic field perpendicular to the cylinder axis. The nature and energy dispersion of the quantum states reflects the interplay between different lengthscales, namely, the cylinder diameter, the magnetic length, and, possibly, the wavelength of the field modulation. We show that a transverse homogeneous magnetic field drives carrier states from a quasi-2D (cylindrical) regime to a quasi-1D regime where carriers form channels along the cylinder surface. Furthermore, a magnetic field which is periodically modulated along the cylinder axis may confine the carriers to tunnel-coupled stripes, rings or dots on the cylinder surface, depending on the ratio between the the field periodicity and the cylinder radius. Results in different regimes are traced to either incipient Landau levels formation or Aharonov-Bohm behaviour.Comment: 23 pages, 14 figure

    Structural and magnetic properties of an InGaAs/Fe3_3Si superlattice in cylindrical geometry

    Full text link
    The structure and the magnetic properties of an InGaAs/Fe3Si superlattice in a cylindrical geometry are investigated by electron microscopy techniques, x-ray diffraction and magnetometry. To form a radial superlattice, a pseudomorphic InGaAs/Fe3As bilayer has been released from its substrate self-forming into a rolled-up microtube. Oxide-free interfaces as well as areas of crystalline bonding are observed and an overall lattice mismatch between succeeding layers is determined. The cylindrical symmetry of the final radial superlattice shows a significant effect on the magnetization behavior of the rolled-up layers

    Spin Transport in Two Dimensional Hopping Systems

    Full text link
    A two dimensional hopping system with Rashba spin-orbit interaction is considered. Our main interest is concerned with the evolution of the spin degree of freedom of the electrons. We derive the rate equations governing the evolution of the charge density and spin polarization of this system in the Markovian limit in one-particle approximation. If only two-site hopping events are taken into account, the evolution of the charge density and of the spin polarization is found to be decoupled. A critical electric field is found, above which oscillations are superimposed on the temporal decay of the total polarization. A coupling between charge density and spin polarization occurs on the level of three-site hopping events. The coupling terms are identified as the anomalous Hall effect and the recently proposed spin Hall effect. Thus, an unpolarized charge current through a sheet of finite width leads to a transversal spin accumulation in our model system.Comment: 15 pages, 3 figure

    Longitudinal spin transport in diluted magnetic semiconductor superlattices: the effect of the giant Zeeman splitting

    Full text link
    Longitudinal spin transport in diluted magnetic semiconductor superlattices is investigated theoretically. The longitudinal magnetoconductivity (MC) in such systems exhibits an oscillating behavior as function of an external magnetic field. In the weak magnetic field region the giant Zeeman splitting plays a dominant role which leads to a large negative magnetoconductivity. In the strong magnetic field region the MC exhibits deep dips with increasing magnetic field. The oscillating behavior is attributed to the interplay between the discrete Landau levels and the Fermi surface. The decrease of the MC at low magnetic field is caused by the s−ds-d exchange interaction between the electron in the conduction band and the magnetic ions.Comment: 6 pages, 9 figures, submitted to Phys. Rev.

    Weak anisotropy and disorder dependence of the in-plane magnetoresistance in high mobility (100) Si-inversion layers

    Full text link
    We report studies of the magnetoresistance (MR) in a two-dimensional electron system in (100) Si-inversion layers, for perpendicular and parallel orientations of the current with respect to the magnetic field in the 2D-plane. The magnetoresistance is almost isotropic; this result does not support the suggestion of the orbital origin of the MR in Si-inversion layer. In the hopping regime, however, the MR contains a weak anisotropic component that is non-monotonic in magnetic field. We found that the field, at which the MR saturates, for different samples varies by a factor of two, being lower or higher than the field of complete spin polarization of free carriers. Therefore, the saturation of the MR can not be identified with the spin polarization of free carriers.Comment: 4 pages, 4 figures; New data adde

    Permanent current from non-commutative spin algebra

    Full text link
    We show that a spontaneous electric current is induced in a nano-scale conducting ring just by putting three ferromagnets. The current is a direct consequence of the non-commutativity of the spin algebra, and is proportional to the non-coplanarity (chirality) of the magnetization vectors. The spontaneous current gives a natural explanation to the chirality-driven anomalous Hall effect.Comment: 7 pages, 4 figures on separate pag
    • …
    corecore