Longitudinal spin transport in diluted magnetic semiconductor superlattices
is investigated theoretically. The longitudinal magnetoconductivity (MC) in
such systems exhibits an oscillating behavior as function of an external
magnetic field. In the weak magnetic field region the giant Zeeman splitting
plays a dominant role which leads to a large negative magnetoconductivity. In
the strong magnetic field region the MC exhibits deep dips with increasing
magnetic field. The oscillating behavior is attributed to the interplay between
the discrete Landau levels and the Fermi surface. The decrease of the MC at low
magnetic field is caused by the s−d exchange interaction between the electron
in the conduction band and the magnetic ions.Comment: 6 pages, 9 figures, submitted to Phys. Rev.