4,952 research outputs found
Sustainable Soesterkwartier
The municipality of Amersfoort wants to construct an endurable and sustainable eco-town in the Soesterkwartier neighbourhood, by taking future climate change into account. The impact of climate change at the location of the proposed eco-town was studied by a literature review
Cooperative Extension and Faith-Based Organizations: Building Social Capital
This article explores the historical relationship between Cooperative Extension and faith-based organizations. Using historical texts, the authors show that since the passage of the Smith-Lever Act in 1914, Cooperative Extension has worked with faith-based organizations, such as congregations, to promote community renewal. Extension and congregations--then and now--share a deep commitment to building community. The authors conclude that by remembering its historical roots, Extension can renew a vision for creating a just, democratic society. In this way, Extension can help create healthier communities
Spin-dependent transport in metal/semiconductor tunnel junctions
This paper describes a model as well as experiments on spin-polarized tunnelling with the aid of optical spin orientation. This involves tunnel junctions between a magnetic material and gallium arsenide (GaAs), where the latter is optically excited with circularly polarized light in order to generate spin-polarized carriers. A transport model is presented that takes account of carrier capture in the semiconductor surface states, and describes the semiconductor surface in terms of a spin-dependent energy distribution function. The so-called surface spin-splitting can be calculated from the balance of the polarized electron and hole flow in the semiconductor subsurface region, the polarized tunnelling current across the tunnel barrier between the magnetic material and the semiconductor surface, and the spin relaxation at the semiconductor surface.
Measurements are presented of the circular-polarization-dependent photocurrent (the so-called helicity asymmetry) in thin-film tunnel junctions of Co/Al2O3/GaAs. In the absence of a tunnel barrier, the helicity asymmetry is caused by magneto-optical effects (magnetic circular dichroism). In the case where a tunnel barrier is present, the data cannot be explained by magneto-optical effects alone; the deviations provide evidence that spin-polarized tunnelling due to optical spin orientation occurs. In Co/Ï„-MnAl/AlAs/GaAs junctions no deviations from the magneto-optical effects are observed, most probably due to the weak spin polarization of Ï„-MnAl along the tunnelling direction; the latter is corroborated by bandstructure calculations. Finally, the application of photoexcited GaAs for spin-polarized tunnelling in a scanning tunnelling microscope is discussed.
A comparison of faecal analysis with backtracking to determine the diet composition and species preference of the black rhinoceros (Diceros bicornis minor)
The diet of black rhinoceros (Diceros bicornis minor) was studied using backtracking and faecal analysis in South Africa. Both methods yielded different results, with a large bias for dominant species. Results of backtracking showed that the rhinos browsed on 80 plant species. Grasses comprised 4.5% of the diet in the faecal analysis, but were not recorded during the backtracking. The backtracking method, along with a measure of forage availability, was used to identify two groups of plant species, those species taken in a higher proportion than available in the field and those taken in a lower proportion. Chemical analyses showed that these two species groups were similar in in vitro digestibility, macro-elements and fibre constituents. Mean bite size and species contribution to the diet were not correlated with any of the forage quality parameters, indicating that rhinos were not maximising nutrient intake or minimising fibre intake of these consumed plant species
Robust detection of alternative splicing in a population of single cells
Single cell RNA-seq experiments provide valuable insight into cellular heterogeneity but suffer from low coverage, 3′ bias and technical noise. These unique properties of single cell RNA-seq data make study of alternative splicing difficult, and thus most single cell studies have restricted analysis of transcriptome variation to the gene level. To address these limitations, we developed SingleSplice, which uses a statistical model to detect genes whose isoform usage shows biological variation significantly exceeding technical noise in a population of single cells. Importantly, SingleSplice is tailored to the unique demands of single cell analysis, detecting isoform usage differences without attempting to infer expression levels for full-length transcripts. Using data from spike-in transcripts, we found that our approach detects variation in isoform usage among single cells with high sensitivity and specificity. We also applied SingleSplice to data from mouse embryonic stem cells and discovered a set of genes that show significant biological variation in isoform usage across the set of cells. A subset of these isoform differences are linked to cell cycle stage, suggesting a novel connection between alternative splicing and the cell cycle
- …