2,274 research outputs found

    The carcinogenic action of 2-aminodiphenylene oxide and 4-aminodiphenyl on the bladder and liver of the C57 X IF mouse.

    Get PDF
    CLAYSON, Lawson, Santana and Bonser (1965) suggested that in the mouse the oral administration of chemical bladder carcinogens induced hyperplasia of the bladder epithelium in the first days or weeks of the experiment. Subsequently, Clayson and Pringle (1966) showed that the number of mitoses in the normal adult mouse bladder epithelium is very low and suggested that it is necessary to increase the mitotic rate in order to induce tumours. They showed that the implantation of a paraffin wax or cholesterol pellet, or a small glass bead, into the lumen of the bladder increased the mitotic rate. Subsequently, Clayson, Pringle and Bonser (1967) found that a single oral administration of 4-ethylsulphonylnaphthalene-1sulphonamide, a murine bladder carcinogen, greatly increased the number of mitoses in the bladder epithelium, while Wood (personal communication) observed a smaller increase in mice given 2-acetamidofluorene in the diet. Thus, the correlation of early hyperplasia and subsequent malignancy can be explained on the grounds of an initial increase in the number of mitoses in the bladder epithelium. In the course of the experiments of Clayson et al. (1965) a number of chemical

    Megamaser Disks in Active Galactic Nuclei

    Get PDF
    Recent spectroscopic and VLBI-imaging observations of bright extragalactic water maser sources have revealed that the megamaser emission often originates in thin circumnuclear disks near the centers of active galactic nuclei (AGNs). Using general radiative and kinematic considerations and taking account of the observed flux variability, we argue that the maser emission regions are clumpy, a conclusion that is independent of the detailed mechanism (X-ray heating, shocks, etc.) driving the collisionally pumped masers. We examine scenarios in which the clumps represent discrete gas condensations (i.e., clouds) and do not merely correspond to velocity irregularities in the disk. We show that even two clouds that overlap within the velocity coherence length along the line of sight could account (through self-amplification) for the entire maser flux of a high-velocity ``satellite'' feature in sources like NGC 4258 and NGC 1068, and we suggest that cloud self-amplification likely contributes also to the flux of the background-amplifying ``systemic'' features in these objects. Analogous interpretations have previously been proposed for water maser sources in Galactic star-forming regions. We argue that this picture provides a natural explanation of the time-variability characteristics of extragalactic megamaser sources and of their apparent association with Seyfert 2-like galaxies. We also show that the requisite cloud space densities and internal densities are consistent with the typical values of nuclear (broad emission-line region-type) clouds.Comment: 55 pages, 7 figures, AASTeX4.0, to appear in The Astrophysical Journal (1999 March 1 issue

    Growth and migration of solids in evolving protostellar disks I: Methods and Analytical tests

    Full text link
    This series of papers investigates the early stages of planet formation by modeling the evolution of the gas and solid content of protostellar disks from the early T Tauri phase until complete dispersal of the gas. In this first paper, I present a new set of simplified equations modeling the growth and migration of various species of grains in a gaseous protostellar disk evolving as a result of the combined effects of viscous accretion and photo-evaporation from the central star. Using the assumption that the grain size distribution function always maintains a power-law structure approximating the average outcome of the exact coagulation/shattering equation, the model focuses on the calculation of the growth rate of the largest grains only. The coupled evolution equations for the maximum grain size, the surface density of the gas and the surface density of solids are then presented and solved self-consistently using a standard 1+1 dimensional formalism. I show that the global evolution of solids is controlled by a leaky reservoir of small grains at large radii, and propose an empirically derived evolution equation for the total mass of solids, which can be used to estimate the total heavy element retention efficiency in the planet formation paradigm. Consistency with observation of the total mass of solids in the Minimum Solar Nebula augmented with the mass of the Oort cloud sets strong upper limit on the initial grain size distribution, as well as on the turbulent parameter \alphat. Detailed comparisons with SED observations are presented in a following paper.Comment: Submitted to ApJ. 23 pages and 13 figure

    Achromatic late-time variability in thermonuclear X-ray bursts - an accretion disk disrupted by a nova-like shell?

    Full text link
    An unusual Eddington-limited thermonuclear X-ray burst was detected from the accreting neutron star in 2S 0918-549 with the Rossi X-ray Timing Explorer. The burst commenced with a brief (40 ms) precursor and maintained near-Eddington fluxes during the initial 77 s. These characteristics are indicative of a nova-like expulsion of a shell from the neutron star surface. Starting 122 s into the burst, the burst shows strong (87 +/- 1% peak-to-peak amplitude) achromatic fluctuations for 60 s. We speculate that the fluctuations are due to Thompson scattering by fully-ionized inhomogeneities in a resettling accretion disk that was disrupted by the effects of super-Eddington fluxes. An expanding shell may be the necessary prerequisite for the fluctuations.Comment: 7 pages, 4 figures. Submitted to A&

    Self-Similar Magnetocentrifugal Disk Winds with Cylindrical Asymptotics

    Get PDF
    We construct a two-parameter family of models for self-collimated, radially self-similar magnetized outflows from accretion disks. A flow at zero initial poloidal speed leaves the surface of a rotating disk and is accelerated and redirected toward the pole by helical magnetic fields threading the disk. At large distances from the disk, the flow streamlines asymptote to wrap around the surfaces of nested cylinders. In constrast to previous disk wind modeling, we have explicitly implemented the cylindrical asymptotic boundary condition to examine the consequences for flow dynamics. The solutions are characterized by the logarithmic gradient of the magnetic field strength and the ratios between the footpoint radius R_0 and asymptotic radius R_1 of streamlines; the Alfven radius must be found as an eigenvalue. Cylindrical solutions require the magnetic field to drop less steeply than 1/R. We find that the asymptotic poloidal speed on any streamline is typically just a few tenths of the Kepler speed at the corresponding disk footpoint. The asymptotic toroidal Alfven speed is, however, a few times the footpoint Kepler speed. We discuss the implications of the models for interpretations of observed optical jets and molecular outflows from young stellar systems. We suggest that the difficulty of achieving strong collimation in vector velocity simultaneously with a final speed comparable to the disk rotation rate argues against isolated jets and in favor of models with broader winds.Comment: 39 pages, Latex (uses AAS Latex macros), 6 eps figures, postscript preprint with embedded figures available from http://www.astro.umd.edu/~ostriker/professional/publications.html , to appear in ApJ 9/1/9

    Evolution of accretion disks around massive black holes: constraints from the demography of active galactic nuclei

    Full text link
    Observations have shown that the Eddington ratios (the ratio of the bolometric luminosity to the Eddington luminosity) in QSOs/active galactic nuclei (AGNs) cover a wide range. In this paper we connect the demography of AGNs obtained by the Sloan Digital Sky Survey with the accretion physics around massive black holes and propose that the diversity in the Eddington ratios is a natural result of the long-term evolution of accretion disks in AGNs. The observed accretion rate distribution of AGNs (with host galaxy velocity dispersion sigma~70-200 km/s) in the nearby universe (z<0.3) is consistent with the predictions of simple theoretical models in which the accretion rates evolve in a self-similar way. We also discuss the implications of the results for the issues related to self-gravitating disks, coevolution of galaxies and QSOs/AGNs, and the unification picture of AGNs.Comment: 18 pages, 2 figures; revised, main conclusions not changed; to appear in ApJ, Oct., 200

    Thermal Properties of Two-Dimensional Advection Dominated Accretion Flow

    Get PDF
    We study the thermal structure of the widely adopted two-dimensional advection dominated accretion flow (ADAF) of Narayan & Yi (1995a). The critical radius for a given mass accretion rate, outside of which the optically thin hot solutions do not exist in the equatorial plane, agrees with one-dimensional study. However, we find that, even within the critical radius, there always exists a conical region of the flow, around the pole, which cannot maintain the assumed high electron temperature, regardless of the mass accretion rate, in the absence of radiative heating. This could lead to torus-like advection inflow shape since, in general, the ions too will cool down. We also find that Compton preheating is generally important and, if the radiative efficiency, defined as the luminosity output divided by the mass accretion rate times the velocity of light squared, is above sim 4x10^-3, the polar region of the flow is preheated above the virial temperature by Compton heating and it may result in time-dependent behaviour or outflow while accretion continues in the equatorial plane. Thus, under most relevant circumstances, ADAF solutions may be expected to be accompanied by polar outflow winds. While preheating instabilities exist in ADAF, as for spherical flows, the former are to some extent protected by their characteristically higher densities and higher cooling rates, which reduce their susceptibility to Compton driven overheating.Comment: 18 pages including 4 figures. AASTEX. Submitted to Ap

    On the enigmatic X-ray Source V1408 Aql (=4U 1957+11)

    Get PDF
    Models for the characteristically soft X-ray spectrum of the compact X-ray source V1498 Aql (=4U 1957+11) have ranged from optically thick Comptonization to multicolor accretion disk models. We critically examine the X-ray spectrum of V1408 Aql via archival Advanced Satellite for Cosmology and Astrophysics (ASCA) data, archival Roentgensatellit (ROSAT) data, and recent Rossi X-Ray Timing Explorer (RXTE) data. Although we are able to fit a variety of X-ray spectral models to these data, we favor an interpretation of the X-ray spectrum as being due to an accretion disk viewed at large inclination angles. Evidence for this hypothesis includes long term (117 day, 235 day, 352 day) periodicities seen by the RXTE All Sky Monitor (ASM), which we interpret as being due to a warped precessing disk, and a 1 keV feature in the ASCA data, which we interpret as being the blend of L fluorescence features from a disk atmosphere or wind. We also present timing analysis of the RXTE data and find upper limits of 4% for the root mean square (rms) variability between f=0.001-16 Hz. The situation of whether the compact object is a black hole or neutron star is still ambiguous; however, it now seems more likely that an X-ray emitting, warped accretion disk is an important component of this system.Comment: High Frequency Power Spectrum corrected for unflagged `data dropouts' (described in Appendix) and correct upper limits for variability presented. All energy spectra and long term variability sections unchanged. Additional references and acknowledgements added. 13 pages in emulateapj.st

    Creating a sport and exercise medicine undergraduate syllabus: a delphi study

    Get PDF
    Background Sport and Exercise Medicine (SEM) is a growing speciality in the United Kingdom (UK). This growth has not been replicated in SEM teaching at an undergraduate level and SEM-related topics in schools of medicine in the UK are under-represented. As SEM continues to develop as a specialty it is important to consider how it is embedded at all levels of training. The aim of this project was to establish a consensus on SEM-related skills and knowledge relevant for undergraduate medical students in the UK, ultimately creating a curriculum of learning objectives (LOs). Methods A modified Delphi survey was utilised to seek consensus on LOs suitable for incorporation into UK medical school curricula. An expert panel with adequate knowledge in the field was recruited. The initial curriculum was created by the research team using already established postgraduate SEM curricula. All learning objectives were sent to the expert panel for opinions in phases. Levels of agreement and comments made by the expert panel were reviewed after each phase until a consensus on each learning objective was made. Results The expert panel was made up of 45 individuals, with 35 also completing phase 2 (78% retention rate). The initial curriculum contained 58 learning objectives separated into 9 themes. In phase 1 31% (18/58) were accepted outright, 48% (28/58) were altered and 19% (11/58) were rejected. Two additional learning objectives were added. Of the 49 LOs included in phase 2, 98% (48/49) were accepted. The final curriculum was made up of 9 sub-themes and 48 LOs. Conclusion Sport and Exercise Medicine is a broad ranging and rapidly growing speciality. It is important to establish SEM education in all levels of medical education, including undergraduate level. This is the first published version of a Delphi SEM curriculum for undergraduate medical teaching
    • 

    corecore