1,022 research outputs found

    Micron- to nano-scale intergrowths among members of the cuprobismutite series and paderaite: HRTEM and microanalytical evidence

    Get PDF
    Copyright © 2004 The Mineralogical SocietyCoherent intergrowths, at the lattice scale, between cuprobismutite (N = 2) and structurally related padraite along both major axes (15 Åand 17 Årepeats) of the two minerals are reported within skarn from Ocna de Fier, Romania. The structural subunit, DTD, 3 layers of padraite, is involved at interfaces of the two minerals along the 15 Årepeat, as well as in transposition of 1 padraite unit to 2 cuprobismutite units along the 17 Årepeat in slip defects. Lattice images obtained by HRTEM across intervals of 200 -400 nm show short- to long-range stacking sequences of cuprobismutite and padraite ribbons. Such nanoscale slabs mimic µm-scale intergrowths observed in back-scattered electron images at three orders of magnitude greater. These slabs are compositionally equivalent to intermediaries in the cuprobismutite-padraite range encountered during microanalysis. Hodrushite (N = 1.5) is identified in the µm-scale intergrowths, but its absence in the lattice images indicates that, in this case, formation of polysomes between structurally related phases is favoured instead of stacking disorder among cuprobismutite homologues. The tendency for short-range ordering and semi-periodic occurrence of polysomes suggests they are the result of an oscillatory chemical signal with periodicity varying from one to three repeats of 15 Å, rather than simple 'accidents' or irregular structural defects. Lead distribution along the polysomes is modelled as an output signal modulated by the periodicity of stacking sequences, with Pb carried within the D units of padraite. This type of modulator acts as a patterning operator activated by chemical waves with amplitudes that encompass the chemical difference between the minerals. Conversion of the padraite structural subunit DTD to the C unit of cuprobismutite, conserving interval width, emphasizes that polysomatic modularity also assists interference of chemical signals with opposite amplitudes. Observed coarsening of lattice-scale intergrowths up to the µm-scale implies coupling between diffusion-controlled structural modulation, and rhythmic precipitation at the skarn front during crystallization.C.L. Ciobanu, A. Pring and N.J. Coo

    A Case Study of Rock-Fluid Interaction in the Enhanced Geothermal System in Cooper Basin, South Australia

    Get PDF
    This study was undertaken to observe mineral dissolution with replacing circulating fluid with fresh water every 24 hours. This was an attempt to accelerate the dissolution rate and to mimic the condition of a geothermal site when fresh water or treated water from a precipitation tank is reinjected to the fracture. The experiments were carried out in a titanium flow through cell for 1, 7, and 28 days at 250°C and 40 bars. Water analysis was performed using ICP-MS, and rock analyses were conducted using SEM, XRD and XRF. The experimental results revealed a linear correlation of mineral (element) dissolution at the early stages of the experiment. However at later stages, the mineral dissolution proceeds at a slower rate. This may have been caused by the exhaustion of a more soluble mineral phase in the sample. Therefore, this may cause the pore size in the fracture path size to enlarge. SEM observations showed evidence of etching of the mineral surfaces consistent with partial dissolution. SEM backscattered images reveals that mostly quartz phase (SiO₂) remains after 28 days of circulation. XRD results complement these finding, that quartz was stable throughout the experiment, and that the albite-feldspar (NaAlSi₃O₈) and microcline (KALSi₃O₈) in the rock had partially dissolved. As well, ICP-MS analysis of water samples confirmed that some mineral dissolution occurred. XRF study was used to generate an elemental mass balance. Determination of the dissolution kinetics of the various minerals phase is being undertaken.Gideon Kuncoro, Yung Ngothai, Brian O'Neill, Allan Pring, Joël Bruggerhttp://www.chemeca2010.com/abstract/270.as

    The Lowland Maya "Protoclassic"

    Get PDF
    The term "Protoclassic," employed regularly but inexplicitly in the literature of lowland Maya archaeology, has become increasingly nebulous and ambiguous in both meaning and usage. This paper reviews the history and use of the term and presents a formal redefinition of the Protoclassic as a ceramic stage based explicitly and exclusively on ceramic criteria. Some suggestions regarding future use of the term also are offered. The paper further addresses and resolves a number of persisting questions regarding Protoclassic orange wares, including problems concerning the actual existence of the "Aguacate ceramic group." and the relationships of Aguacate-group pottery to other emergent orange wares of the terminal Late Preclassic and initial Early Classic periods. The nature and significance of the "Holmul I Style," the "Floral Park Ceramic Sphere." and the relationships of the two to each other and the larger, redefined "protoclassic" ceramic stage also are examined. A spatial distribution for protoclassic ceramics considerably expanded over what has ever been reported previously is described, and chronometric data are presented to support a revised chronology for the protoclassic ceramic stage. Finally, ceramic data are offered that suggest a real subdivision of the protoclassic ceramic stage into an early, emergent facet originating entirely within Late Preclassic lowland traditions, and a later, fully "Classic" facet corresponding to the early Tzakol (Tzakol 1) ceramic horizon

    Mineral transformations in gold-(silver) tellurides in the presence of fluids: nature and experiment

    Get PDF
    Gold–(silver) telluride minerals constitute a major part of the gold endowment at a number of important deposits across the globe. A brief overview of the chemistry and structure of the main gold and silver telluride minerals is presented, focusing on the relationships between calaverite, krennerite, and sylvanite, which have overlapping compositions. These three minerals are replaced by gold–silver alloys when subjected to the actions of hydrothermal fluids under mild hydrothermal conditions (≤220 °C). An overview of the product textures, reaction mechanisms, and kinetics of the oxidative leaching of tellurium from gold–(silver) tellurides is presented. For calaverite and krennerite, the replacement reactions are relatively simple interface-coupled dissolution-reprecipitation reactions. In these reactions, the telluride minerals dissolve at the reaction interface and gold immediately precipitates and grows as gold filaments; the tellurium is oxidized to Te(IV) and is lost to the bulk solution. The replacement of sylvanite is more complex and involves two competing pathways leading to either a gold spongy alloy or a mixture of calaverite, hessite, and petzite. This work highlights the substantial progress that has been made in recent years towards understanding the mineralization processes of natural gold–(silver) telluride minerals and mustard gold under hydrothermal conditions. The results of these studies have potential implications for the industrial treatment of gold-bearing telluride minerals.Jing Zhao and Allan Prin
    • …
    corecore