26 research outputs found

    Hepatotoxicity induced by horse ATG and reversed by rabbit ATG: a case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The use of antilymphocyte agents has improved patient and graft survival in hematopoietic stem cell and solid organ transplantation but has been associated with the development of short-term toxicities as well as long-term complications.</p> <p>Case presentation</p> <p>We report a young female with Fanconi anemia who received antithymocyte globulin as part of the conditioning regimen prior to her planned allogeneic hematopoietic stem cell transplant at King Faisal Specialist Hospital and Research Centre in Riyadh. She developed sudden and severe hepatotoxicity after receiving the first dose of horse antithymocyte globulin, manifested by marked elevation of serum transaminases and mild elevation of serum bilirubin level. Immediately after withdrawal of the offending agent and shifting to the rabbit form of antithymocyte globulin, the gross liver dysfunction started to subside and the hepatic profile results returned to the pre-transplant levels few weeks later. The patient had her allogeneic hematopoietic stem cell transplant as planned without any further hepatic complications. After having a successful allograft, she was discharged from the stem cell transplant unit. During her follow up at the outpatient clinic, the patient remained very well and no major complication was encountered.</p> <p>Conclusion</p> <p>Hepatotoxicity related to the utilization of antithymocyte globulin varies considerably in severity and may be transient or long standing. There may be individual or population based susceptibilities to the development of side effects and these adverse reactions may also vary with the choice of the agent used. Encountering adverse effects with one type of antithymocyte agents should not discourage clinicians from shifting to another type in situations where continuation of the drug is vital.</p

    Transfer of immunoglobulins through the mammary endothelium and epithelium and in the local lymph node of cows during the initial response after intramammary challenge with E. coli endotoxin

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The first hours after antigen stimulation, interactions occur influencing the outcome of the immunological reaction. Immunoglobulins originate in blood and/or are locally synthesized. The transfer of Ig isotypes (Igs) in the udder has been studied previously but without the possibility to distinguish between the endothelium and the epithelium. The purpose of this study was to map the Ig transfer through each barrier, separately, and Ig transfer in the local lymph nodes of the bovine udder during the initial innate immune response.</p> <p>Methods</p> <p>The content of IgG1, IgG2, IgM, IgA and albumin (BSA) was examined in peripheral/afferent mammary lymph and lymph leaving the supramammary lymph nodes, and in blood and milk before (0 h) and during 4 hours after intramammary challenge with <it>Esherichia coli </it>endotoxin in 5 cows.</p> <p>Results</p> <p>Igs increased most rapidly in afferent lymph resulting in higher concentrations than in efferent lymph at postinfusion hour (PIH) 2, contrary to before challenge. Ig concentrations in milk were lower than in lymph; except for IgA at 0 h; and they increased more slowly. <it>Afferent lymph:serum </it>and <it>efferent lymph:serum </it>concentration ratios (CR) of Igs were similar to those of BSA but slightly lower. <it>Milk:afferent lymph </it>(M:A) CRs of each Ig, except for IgG2, showed strikingly different pattern than those of BSA. The M:A CR of IgG1, IgM and IgA were higher than that of BSA before challenge and the CR of IgA and IgG1 remained higher also thereafter. At PIH 2 there was a drop in Ig CRs, except for IgG2, in contrast to the BSA CR which gradually increased. The M:A CR of IgM and Ig A <it>decreased </it>from 0 h to PIH 4, in spite of increasing permeability.</p> <p>Conclusion</p> <p>The transfer of Igs through the <it>endothelium </it>appeared to be merely a result of diffusion although their large molecular size may hamper the diffusion. The transfer through the <it>epithelium </it>and the Ig concentrations in milk seemed more influenced by selective mechanisms and local sources, respectively. Our observations indicate a selective mechanism in the transfer of IgG1 through the epithelium also in lactating glands, not previously shown; a local synthesis of IgA and possibly of IgM, released primarily into milk, not into tissue fluid; that IgG2 transfer through both barriers is a result of passive diffusion only and that the content of efferent lymph is strongly influenced by IgG1, IgM and IgA in the mammary tissue, brought to the lymph node by afferent lymph.</p

    O2 Level Controls Hematopoietic Circulating Progenitor Cells Differentiation into Endothelial or Smooth Muscle Cells

    Get PDF
    BACKGROUND:Recent studies showed that progenitor cells could differentiate into mature vascular cells. The main physiological factors implicated in cell differentiation are specific growth factors. We hypothesized that simply by varying the oxygen content, progenitor cells can be differentiated either in mature endothelial cells (ECs) or contractile smooth muscle cells (SMCs) while keeping exactly the same culture medium. METHODOLOGY/PRINCIPAL FINDINGS:Mononuclear cells were isolated by density gradient were cultivated under hypoxic (5% O2) or normoxic (21% O2) environment. Differentiated cells characterization was performed by confocal microscopy examination and flow cytometry analyses. The phenotype stability over a longer time period was also performed. The morphological examination of the confluent obtained cells after several weeks (between 2 and 4 weeks) showed two distinct morphologies: cobblestone shape in normoxia and a spindle like shape in hypoxia. The cell characterization showed that cobblestone cells were positive to ECs markers while spindle like shape cells were positive to contractile SMCs markers. Moreover, after several further amplification (until 3(rd) passage) in hypoxic or normoxic conditions of the previously differentiated SMC, immunofluorescence studies showed that more than 80% cells continued to express SMCs markers whatever the cell environmental culture conditions with a higher contractile markers expression compared to control (aorta SMCs) signature of phenotype stability. CONCLUSION/SIGNIFICANCE:We demonstrate in this paper that in vitro culture of peripheral blood mononuclear cells with specific angiogenic growth factors under hypoxic conditions leads to SMCs differentiation into a contractile phenotype, signature of their physiological state. Moreover after amplification, the differentiated SMC did not reverse and keep their contractile phenotype after the 3rd passage performed under hypoxic and normoxic conditions. These aspects are of the highest importance for tissue engineering strategies. These results highlight also the determinant role of the tissue environment in the differentiation process of vascular progenitor cells

    Interaction de l’hémoglobine octamérique recombinante avec les cellules endothéliales

    No full text
    International audienceHemoglobin-based oxygen carriers (HBOCs) may generate oxidative stress, vasoconstriction and inflammation. To reduce these undesirable vasoactive properties, we increased hemoglobin (Hb) molecular size by genetic engineering with octameric Hb, recombinant (r) HbβG83C. We investigate the potential side effects of rHbβG83C on endothelial cells. The rHbβG83C has no impact on cell viability, and induces a huge repression of endothelial nitric oxide synthase gene transcription, a marker of vasomotion. No induction of Intermolecular-Adhesion Molecule 1 and E-selectin (inflammatory markers) transcription was seen. In the presence of rHbβG83C, the transcription of heme oxygenase-1 (oxidative stress marker) is weakly increased compared to the two other HBOCs (references) or Voluven (control). This genetically engineered octameric Hb, based on a human Hb βG83C mutant, leads to little impact at the level of endothelial cell inflammatory response and thus appears as an interesting molecule for HBOC development.Les transporteurs d’oxygène à base d’hémoglobine (HBOCs) peuvent induire stress oxydant, vasoconstriction et inflammation. Afin de réduire ces propriétés vasoactives indésirables, nous avons augmenté, par génie génétique, la taille moléculaire de l’hémoglobine (Hb) produisant une Hb octamérique recombinante (r), la rHbβG83C. La rHbβG83C n’a pas d’impact sur la viabilité des cellules endothéliales et induit une répression très importante de la transcription du gène de la NO synthase (marqueur de vasoactivité). Aucune induction de la transcription de gènes des molécules d’adhésion ICAM-1 et E-sélectine (marqueurs d’inflammation) n’a été mise en évidence. En présence de rHbβG83C, la transcription du gène de l’hème oxygénase-I (marqueur de stress oxydant) est faiblement augmentée en comparaison du cas des deux autres HBOCs références et au Voluven (témoin). La rHbβG83C, basée sur un mutant de l’Hb humaine, présente moins d’impact au niveau de la réponse inflammatoire des cellules endothéliales et semble donc être une molécule intéressante pour le développement d’un HBOC

    Enzymatic Activities of Bovine Peripheral Blood Leukocytes and Milk Polymorphonuclear Neutrophils during Intramammary Inflammation Caused by Lipopolysaccharide

    No full text
    Leukocytes are recruited from peripheral blood into milk as part of the inflammatory response to mastitis. However, excessive accumulation of inflammatory cells alters the quality of milk and the proteases produced by polymorphonuclear neutrophils (PMNs) and macrophages may lead to mammary tissue damage. To investigate PMN recruitment and the kinetics of their intracytoplasmic enzymes in inflammation, we generated mastitis in six cows by intramammary infusion of lipopolysaccharide (LPS). Clinical signs of acute mastitis were observed in all of the cows, and normal status was resumed by 316 h. Intracytoplasmic elastase, collagenase, and cathepsin activities were measured within live cells by flow cytometry in peripheral blood leukocytes and milk PMNs before and during the inflammatory process (at 10 time points between 4 and 316 h). The proportion of immature PMNs was appreciated by CD33 surface labeling measured in flow cytometry. Leukopenia was observed in the peripheral blood 4 h postinfusion, concomitant to an increase in somatic cell counts in milk. CD33(+) PMNs were preferentially recruited from the peripheral blood to milk. Enzymatic activities were detected in PMNs, lymphocytes, and monocytes at levels depending on the cell type, sample nature, and time of collection. Milk PMNs had lower enzymatic activities than peripheral blood PMNs. This study showed that milk PMNs recruited during LPS-induced experimental mastitis have an immature phenotype and significantly lower enzymatic activities than peripheral blood PMNs. This suggests that CD33, an adhesion molecule, may be involved in the egress from blood to milk and that the enzymatic contents of PMNs are partly used during this process

    The importance of the effect of shear stress on endothelial cells in determining the performance of hemoglobin based oxygen carriers

    No full text
    The lack of blood donations and the threat of infections from blood and blood products have led to extensive research into the development of blood substitutes. The latest generation of hemoglobin based oxygen carriers (HBOC) has been shown to induce side effects like hypertension, vasoconstriction, inflammation and oxidative stress. HBOC are able to restore volemia and transport oxygen after a hemorrhagic shock, the reperfusion leading to the restoration of the blood flow in vessels. We propose an innovative approach, more closely emulating clinical situations, to assess the impact of HBOC perfusion on endothelial cells (EC) in vitro. Through this approach we quantified levels of oxidative stress, vasoactive factors and inflammation. EC were cultivated under a laminar flow to reproduce the return of shear stress (SS) during the reperfusion. We showed that heme oxygenase I transcription correlated with changes in oxidatively modified heme and methemoglobin; all were lower under SS. SS induced increased nitric oxide production, which may have implications for the mechanism of in vivo vasoconstriction and hypertension. E-selectin changes under SS were greater than those of ICAM-1. Our results demonstrate how it is essential to include SS in assays attempting to understand the potential vascular side effects of HBOC perfusion. © 2008 Elsevier Ltd. All rights reserved

    Evaluation of Endocan as a Treatment for Acute Inflammatory Respiratory Failure

    No full text
    Background: Acute respiratory distress syndrome (ARDS) is a life-threatening condition resulting from acute pulmonary inflammation. However, no specific treatment for ARDS has yet been developed. Previous findings suggest that lung injuries related to ARDS could be regulated by endocan (Esm-1). The aim of this study was to evaluate the potential efficiency of endocan in the treatment of ARDS. Methods: We first compared the features of acute pulmonary inflammation and the severity of hypoxemia in a tracheal LPS-induced acute lung injury (ALI) model performed in knockout (Esm1−/−) and wild type (WT) littermate C57Bl/6 mice. Next, we assessed the effects of a continuous infusion of glycosylated murine endocan in our ALI model in Esm1−/− mice. Results: In our ALI model, we report higher alveolar leukocytes (p p p p Esm1−/− mice compared to WT mice. Continuous delivery of glycosylated murine endocan after LPS-induced ALI resulted in decreased alveolar leukocytes (p = 0.012) and neutrophils (p = 0.012), higher blood oxygenation levels (p p = 0.04), compared to mice treated with PBS. Conclusions: Endocan appears to be an effective treatment in an ARDS-like model in C57Bl/6 mice
    corecore