189 research outputs found

    Serological proteome analysis reveals new specific biases in the IgM and IgG autoantibody repertoires in autoimmune polyendocrine syndrome type 1

    Get PDF
    Objective: Autoimmune polyendocrine syndrome type 1 (APS 1) is caused by mutations in the AIRE gene that induce intrathymic T-cell tolerance breakdown, which results in tissue-specific autoimmune diseases. Design: To evaluate the effect of a well-defined T-cell repertoire impairment on humoral self-reactive fingerprints, comparative serum self-IgG and self-IgM reactivities were analyzed using both one- and two-dimensional western blotting approaches against a broad spectrum of peripheral tissue antigens. Methods: Autoantibody patterns of APS 1 patients were compared with those of subjects affected by other autoimmune endocrinopathies (OAE) and healthy controls. Results: Using a Chi-square test, significant changes in the Ab repertoire were found when intergroup patterns were compared. A singular distortion of both serum self-IgG and self-IgM repertoires was noted in APS 1 patients. The molecular characterization of these antigenic targets was conducted using a proteomic approach. In this context, autoantibodies recognized more significantly either tissue-specific antigens, such as pancreatic amylase, pancreatic triacylglycerol lipase and pancreatic regenerating protein 1α, or widely distributed antigens, such as peroxiredoxin-2, heat shock cognate 71-kDa protein and aldose reductase. As expected, a well-defined self-reactive T-cell repertoire impairment, as described in APS 1 patients, affected the tissue-specific self-IgG repertoire. Interestingly, discriminant IgM reactivities targeting both tissue-specific and more widely expressed antigens were also specifically observed in APS 1 patients. Using recombinant targets, we observed that post translational modifications of these specific antigens impacted upon their recognition. Conclusions: The data suggest that T-cell-dependent but also T-cell-independent mechanisms are involved in the dynamic evolution of autoimmunity in APS 1

    Insertion Magnets

    Full text link
    Chapter 3 in High-Luminosity Large Hadron Collider (HL-LHC) : Preliminary Design Report. The Large Hadron Collider (LHC) is one of the largest scientific instruments ever built. Since opening up a new energy frontier for exploration in 2010, it has gathered a global user community of about 7,000 scientists working in fundamental particle physics and the physics of hadronic matter at extreme temperature and density. To sustain and extend its discovery potential, the LHC will need a major upgrade in the 2020s. This will increase its luminosity (rate of collisions) by a factor of five beyond the original design value and the integrated luminosity (total collisions created) by a factor ten. The LHC is already a highly complex and exquisitely optimised machine so this upgrade must be carefully conceived and will require about ten years to implement. The new configuration, known as High Luminosity LHC (HL-LHC), will rely on a number of key innovations that push accelerator technology beyond its present limits. Among these are cutting-edge 11-12 tesla superconducting magnets, compact superconducting cavities for beam rotation with ultra-precise phase control, new technology and physical processes for beam collimation and 300 metre-long high-power superconducting links with negligible energy dissipation. The present document describes the technologies and components that will be used to realise the project and is intended to serve as the basis for the detailed engineering design of HL-LHC.Comment: 19 pages, Chapter 3 in High-Luminosity Large Hadron Collider (HL-LHC) : Preliminary Design Repor

    Conceptual Design of the LHC Interaction Region Upgrade: Phase-I

    Get PDF
    The LHC is starting operation with beam. The primary goal of CERN and the LHC community is to ensure that the collider is operated efficiently and that it achieves nominal performance in the shortest term. Since several years the community has been discussing the directions for maximizing the physics reach of the LHC by upgrading the experiments, in particular ATLAS and CMS, the LHC machine and the CERN proton injector complex, in a phased approach. The first phase of the LHC interaction region upgrade was approved by Council in December 2007. This phase relies on the mature Nb-Ti superconducting magnet technology with the target of increasing the LHC luminosity to 2 to 3 10^34 cm^-2s^-1, while maximising the use of the existing infrastructure. In this report, we present the goals and the proposed conceptual solutions for the LHC IR Upgrade Phase-I which include the recommendations of the conceptual design review

    The innovation of the symbiosome has enhanced the evolutionary stability of nitrogen fixation in legumes

    Get PDF
    Nitrogen-fixing symbiosis is globally important in ecosystem functioning and agriculture, yet the evolutionary history of nodulation remains the focus of considerable debate. Recent evidence suggesting a single origin of nodulation followed by massive parallel evolutionary losses raises questions about why a few lineages in the N2-fixing clade retained nodulation and diversified as stable nodulators, while most did not. Within legumes, nodulation is restricted to the two most diverse subfamilies, Papilionoideae and Caesalpinioideae, which show stable retention of nodulation across their core clades. We characterize two nodule anatomy types across 128 species in 56 of the 152 genera of the legume subfamily Caesalpinioideae: fixation thread nodules (FTs), where nitrogen-fixing bacteroids are retained within the apoplast in modified infection threads, and symbiosomes, where rhizobia are symplastically internalized in the host cell cytoplasm within membrane-bound symbiosomes (SYMs). Using a robust phylogenomic tree based on 997 genes from 147 Caesalpinioideae genera, we show that losses of nodulation are more prevalent in lineages with FTs than those with SYMs. We propose that evolution of the symbiosome allows for a more intimate and enduring symbiosis through tighter compartmentalization of their rhizobial microsymbionts, resulting in greater evolutionary stability of nodulation across this species-rich pantropical legume clade

    Divergent roles for Eph and Ephrin in Avian Cranial Neural Crest

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As in other vertebrates, avian hindbrain neural crest migrates in streams to specific branchial arches. Signalling from Eph receptors and ephrins has been proposed to provide a molecular mechanism that guides the cells restricting them to streams. In mice and frogs, cranial neural crest express a combination of Eph receptors and ephrins that appear to exclude cells from adjacent tissues by forward and reverse signalling. The objective of this study was to provide comparative data on the distribution and function of Eph receptors and ephrins in avian embryos.</p> <p>Results</p> <p>To distinguish neural crest from bordering ectoderm and head mesenchyme, we have co-labelled embryos for Eph or ephrin RNA and a neural crest marker protein. Throughout their migration avian cranial neural crest cells express EphA3, EphA4, EphA7, EphB1, and EphB3 and move along pathways bordered by non-neural crest cells expressing ephrin-B1. In addition, avian cranial neural crest cells express ephrin-B2 and migrate along pathways bordered by non-neural crest cells expressing EphB2. Thus, the distribution of avian Eph receptors and ephrins differs from those reported in other vertebrates. In stripe assays when explanted cranial neural crest were given the choice between FN or FN plus clustered ephrin-B1 or EphB2 fusion protein, the cells strongly localize to lanes containing only FN. This preference is mitigated in the presence of soluble ephrin-B1 or EphB2 fusion protein.</p> <p>Conclusion</p> <p>These findings show that avian cranial neural crest use Eph and ephrin receptors as other vertebrates in guiding migration. However, the Eph receptors are expressed in different combinations by neural crest destined for each branchial arch and ephrin-B1 and ephrin-B2 appear to have opposite roles to those reported to guide cranial neural crest migration in mice. Unlike many of the signalling, specification, and effector pathways of neural crest, the roles of Eph receptors and ephrins have not been rigorously conserved. This suggests diversification of receptor and ligand expression is less constrained, possibly by promiscuous binding and use of common downstream pathways.</p

    Maternal iron deficiency perturbs embryonic cardiovascular development in mice.

    Get PDF
    Congenital heart disease (CHD) is the most common class of human birth defects, with a prevalence of 0.9% of births. However, two-thirds of cases have an unknown cause, and many of these are thought to be caused by in utero exposure to environmental teratogens. Here we identify a potential teratogen causing CHD in mice: maternal iron deficiency (ID). We show that maternal ID in mice causes severe cardiovascular defects in the offspring. These defects likely arise from increased retinoic acid signalling in ID embryos. The defects can be prevented by iron administration in early pregnancy. It has also been proposed that teratogen exposure may potentiate the effects of genetic predisposition to CHD through gene-environment interaction. Here we show that maternal ID increases the severity of heart and craniofacial defects in a mouse model of Down syndrome. It will be important to understand if the effects of maternal ID seen here in mice may have clinical implications for women

    The innovation of the symbiosome has enhanced the evolutionary stability of nitrogen fixation in legumes

    Full text link
    Nitrogen-fixing symbiosis is globally important in ecosystem functioning and agriculture, yet the evolutionary history of nodulation remains the focus of considerable debate. Recent evidence suggesting a single origin of nodulation followed by massive parallel evolutionary losses raises questions about why a few lineages in the N2 -fixing clade retained nodulation and diversified as stable nodulators, while most did not. Within legumes, nodulation is restricted to the two most diverse subfamilies, Papilionoideae and Caesalpinioideae, which show stable retention of nodulation across their core clades. We characterize two nodule anatomy types across 128 species in 56 of the 152 genera of the legume subfamily Caesalpinioideae: fixation thread nodules (FTs), where nitrogen-fixing bacteroids are retained within the apoplast in modified infection threads, and symbiosomes, where rhizobia are symplastically internalized in the host cell cytoplasm within membrane-bound symbiosomes (SYMs). Using a robust phylogenomic tree based on 997 genes from 147 Caesalpinioideae genera, we show that losses of nodulation are more prevalent in lineages with FTs than those with SYMs. We propose that evolution of the symbiosome allows for a more intimate and enduring symbiosis through tighter compartmentalization of their rhizobial microsymbionts, resulting in greater evolutionary stability of nodulation across this species-rich pantropical legume clade

    Hepatotoxicity induced by horse ATG and reversed by rabbit ATG: a case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The use of antilymphocyte agents has improved patient and graft survival in hematopoietic stem cell and solid organ transplantation but has been associated with the development of short-term toxicities as well as long-term complications.</p> <p>Case presentation</p> <p>We report a young female with Fanconi anemia who received antithymocyte globulin as part of the conditioning regimen prior to her planned allogeneic hematopoietic stem cell transplant at King Faisal Specialist Hospital and Research Centre in Riyadh. She developed sudden and severe hepatotoxicity after receiving the first dose of horse antithymocyte globulin, manifested by marked elevation of serum transaminases and mild elevation of serum bilirubin level. Immediately after withdrawal of the offending agent and shifting to the rabbit form of antithymocyte globulin, the gross liver dysfunction started to subside and the hepatic profile results returned to the pre-transplant levels few weeks later. The patient had her allogeneic hematopoietic stem cell transplant as planned without any further hepatic complications. After having a successful allograft, she was discharged from the stem cell transplant unit. During her follow up at the outpatient clinic, the patient remained very well and no major complication was encountered.</p> <p>Conclusion</p> <p>Hepatotoxicity related to the utilization of antithymocyte globulin varies considerably in severity and may be transient or long standing. There may be individual or population based susceptibilities to the development of side effects and these adverse reactions may also vary with the choice of the agent used. Encountering adverse effects with one type of antithymocyte agents should not discourage clinicians from shifting to another type in situations where continuation of the drug is vital.</p

    Transfer of immunoglobulins through the mammary endothelium and epithelium and in the local lymph node of cows during the initial response after intramammary challenge with E. coli endotoxin

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The first hours after antigen stimulation, interactions occur influencing the outcome of the immunological reaction. Immunoglobulins originate in blood and/or are locally synthesized. The transfer of Ig isotypes (Igs) in the udder has been studied previously but without the possibility to distinguish between the endothelium and the epithelium. The purpose of this study was to map the Ig transfer through each barrier, separately, and Ig transfer in the local lymph nodes of the bovine udder during the initial innate immune response.</p> <p>Methods</p> <p>The content of IgG1, IgG2, IgM, IgA and albumin (BSA) was examined in peripheral/afferent mammary lymph and lymph leaving the supramammary lymph nodes, and in blood and milk before (0 h) and during 4 hours after intramammary challenge with <it>Esherichia coli </it>endotoxin in 5 cows.</p> <p>Results</p> <p>Igs increased most rapidly in afferent lymph resulting in higher concentrations than in efferent lymph at postinfusion hour (PIH) 2, contrary to before challenge. Ig concentrations in milk were lower than in lymph; except for IgA at 0 h; and they increased more slowly. <it>Afferent lymph:serum </it>and <it>efferent lymph:serum </it>concentration ratios (CR) of Igs were similar to those of BSA but slightly lower. <it>Milk:afferent lymph </it>(M:A) CRs of each Ig, except for IgG2, showed strikingly different pattern than those of BSA. The M:A CR of IgG1, IgM and IgA were higher than that of BSA before challenge and the CR of IgA and IgG1 remained higher also thereafter. At PIH 2 there was a drop in Ig CRs, except for IgG2, in contrast to the BSA CR which gradually increased. The M:A CR of IgM and Ig A <it>decreased </it>from 0 h to PIH 4, in spite of increasing permeability.</p> <p>Conclusion</p> <p>The transfer of Igs through the <it>endothelium </it>appeared to be merely a result of diffusion although their large molecular size may hamper the diffusion. The transfer through the <it>epithelium </it>and the Ig concentrations in milk seemed more influenced by selective mechanisms and local sources, respectively. Our observations indicate a selective mechanism in the transfer of IgG1 through the epithelium also in lactating glands, not previously shown; a local synthesis of IgA and possibly of IgM, released primarily into milk, not into tissue fluid; that IgG2 transfer through both barriers is a result of passive diffusion only and that the content of efferent lymph is strongly influenced by IgG1, IgM and IgA in the mammary tissue, brought to the lymph node by afferent lymph.</p
    corecore