132 research outputs found

    Network 'small-world-ness': a quantitative method for determining canonical network equivalence

    Get PDF
    Background: Many technological, biological, social, and information networks fall into the broad class of 'small-world' networks: they have tightly interconnected clusters of nodes, and a shortest mean path length that is similar to a matched random graph (same number of nodes and edges). This semi-quantitative definition leads to a categorical distinction ('small/not-small') rather than a quantitative, continuous grading of networks, and can lead to uncertainty about a network's small-world status. Moreover, systems described by small-world networks are often studied using an equivalent canonical network model-the Watts-Strogatz (WS) model. However, the process of establishing an equivalent WS model is imprecise and there is a pressing need to discover ways in which this equivalence may be quantified. Methodology/Principal Findings: We defined a precise measure of 'small-world-ness' S based on the trade off between high local clustering and short path length. A network is now deemed a 'small-world' if S. 1-an assertion which may be tested statistically. We then examined the behavior of S on a large data-set of real-world systems. We found that all these systems were linked by a linear relationship between their S values and the network size n. Moreover, we show a method for assigning a unique Watts-Strogatz (WS) model to any real-world network, and show analytically that the WS models associated with our sample of networks also show linearity between S and n. Linearity between S and n is not, however, inevitable, and neither is S maximal for an arbitrary network of given size. Linearity may, however, be explained by a common limiting growth process. Conclusions/Significance: We have shown how the notion of a small-world network may be quantified. Several key properties of the metric are described and the use of WS canonical models is placed on a more secure footing

    Phenotype Prediction Using Regularized Regression on Genetic Data in the DREAM5 Systems Genetics B Challenge

    Get PDF
    A major goal of large-scale genomics projects is to enable the use of data from high-throughput experimental methods to predict complex phenotypes such as disease susceptibility. The DREAM5 Systems Genetics B Challenge solicited algorithms to predict soybean plant resistance to the pathogen Phytophthora sojae from training sets including phenotype, genotype, and gene expression data. The challenge test set was divided into three subcategories, one requiring prediction based on only genotype data, another on only gene expression data, and the third on both genotype and gene expression data. Here we present our approach, primarily using regularized regression, which received the best-performer award for subchallenge B2 (gene expression only). We found that despite the availability of 941 genotype markers and 28,395 gene expression features, optimal models determined by cross-validation experiments typically used fewer than ten predictors, underscoring the importance of strong regularization in noisy datasets with far more features than samples. We also present substantial analysis of the training and test setup of the challenge, identifying high variance in performance on the gold standard test sets.National Science Foundation (U.S.). Graduate Research Fellowship ProgramNational Defense Science and Engineering Graduate Fellowshi

    Time lagged information theoretic approaches to the reverse engineering of gene regulatory networks

    Get PDF
    Background: A number of models and algorithms have been proposed in the past for gene regulatory network (GRN) inference; however, none of them address the effects of the size of time-series microarray expression data in terms of the number of time-points. In this paper, we study this problem by analyzing the behaviour of three algorithms based on information theory and dynamic Bayesian network (DBN) models. These algorithms were implemented on different sizes of data generated by synthetic networks. Experiments show that the inference accuracy of these algorithms reaches a saturation point after a specific data size brought about by a saturation in the pair-wise mutual information (MI) metric; hence there is a theoretical limit on the inference accuracy of information theory based schemes that depends on the number of time points of micro-array data used to infer GRNs. This illustrates the fact that MI might not be the best metric to use for GRN inference algorithms. To circumvent the limitations of the MI metric, we introduce a new method of computing time lags between any pair of genes and present the pair-wise time lagged Mutual Information (TLMI) and time lagged Conditional Mutual Information (TLCMI) metrics. Next we use these new metrics to propose novel GRN inference schemes which provides higher inference accuracy based on the precision and recall parameters. Results: It was observed that beyond a certain number of time-points (i.e., a specific size) of micro-array data, the performance of the algorithms measured in terms of the recall-to-precision ratio saturated due to the saturation in the calculated pair-wise MI metric with increasing data size. The proposed algorithms were compared to existing approaches on four different biological networks. The resulting networks were evaluated based on the benchmark precision and recall metrics and the results favour our approach. Conclusions: To alleviate the effects of data size on information theory based GRN inference algorithms, novel time lag based information theoretic approaches to infer gene regulatory networks have been proposed. The results show that the time lags of regulatory effects between any pair of genes play an important role in GRN inference schemes

    Proteomic Analysis of Rta2p-Dependent Raft-Association of Detergent-Resistant Membranes in Candida albicans

    Get PDF
    In Candida albicans, lipid rafts (also called detergent-resistant membranes, DRMs) are involved in many cellular processes and contain many important proteins. In our previous study, we demonstrated that Rta2p was required for calcineurin-mediated azole resistance and sphingoid long-chain base release in C. albicans. Here, we found that Rta2p was co-localized with raft-constituted ergosterol on the plasma membrane of C. albicans. Furthermore, this membrane expression pattern was totally disturbed by inhibitors of either ergosterol or sphingolipid synthesis. Biochemical fractionation of DRMs together with immunoblot uncovered that Rta2p, along with well-known DRM-associated proteins (Pma1p and Gas1p homologue), was associated with DRMs and their associations were blocked by inhibitors of either ergosterol or sphingolipid synthesis. Finally, we used the proteomic analysis together with immunoblot and identified that Rta2p was required for the association of 10 proteins with DRMs. These 5 proteins (Pma1p, Gas1p homologue, Erg11p, Pmt2p and Ali1p) have been reported to be DRM-associated and also that Erg11p is a well-known target of azoles in C. albicans. In conclusion, our results showed that Rta2p was predominantly localized in lipid rafts and was required for the association of certain membrane proteins with lipid rafts in C. albicans

    Inferring causal molecular networks: empirical assessment through a community-based effort.

    Get PDF
    It remains unclear whether causal, rather than merely correlational, relationships in molecular networks can be inferred in complex biological settings. Here we describe the HPN-DREAM network inference challenge, which focused on learning causal influences in signaling networks. We used phosphoprotein data from cancer cell lines as well as in silico data from a nonlinear dynamical model. Using the phosphoprotein data, we scored more than 2,000 networks submitted by challenge participants. The networks spanned 32 biological contexts and were scored in terms of causal validity with respect to unseen interventional data. A number of approaches were effective, and incorporating known biology was generally advantageous. Additional sub-challenges considered time-course prediction and visualization. Our results suggest that learning causal relationships may be feasible in complex settings such as disease states. Furthermore, our scoring approach provides a practical way to empirically assess inferred molecular networks in a causal sense

    Identifying Biological Network Structure, Predicting Network Behavior, and Classifying Network State With High Dimensional Model Representation (HDMR)

    Get PDF
    This work presents an adapted Random Sampling - High Dimensional Model Representation (RS-HDMR) algorithm for synergistically addressing three key problems in network biology: (1) identifying the structure of biological networks from multivariate data, (2) predicting network response under previously unsampled conditions, and (3) inferring experimental perturbations based on the observed network state. RS-HDMR is a multivariate regression method that decomposes network interactions into a hierarchy of non-linear component functions. Sensitivity analysis based on these functions provides a clear physical and statistical interpretation of the underlying network structure. The advantages of RS-HDMR include efficient extraction of nonlinear and cooperative network relationships without resorting to discretization, prediction of network behavior without mechanistic modeling, robustness to data noise, and favorable scalability of the sampling requirement with respect to network size. As a proof-of-principle study, RS-HDMR was applied to experimental data measuring the single-cell response of a protein-protein signaling network to various experimental perturbations. A comparison to network structure identified in the literature and through other inference methods, including Bayesian and mutual-information based algorithms, suggests that RS-HDMR can successfully reveal a network structure with a low false positive rate while still capturing non-linear and cooperative interactions. RS-HDMR identified several higher-order network interactions that correspond to known feedback regulations among multiple network species and that were unidentified by other network inference methods. Furthermore, RS-HDMR has a better ability to predict network response under unsampled conditions in this application than the best statistical inference algorithm presented in the recent DREAM3 signaling-prediction competition. RS-HDMR can discern and predict differences in network state that arise from sources ranging from intrinsic cell-cell variability to altered experimental conditions, such as when drug perturbations are introduced. This ability ultimately allows RS-HDMR to accurately classify the experimental conditions of a given sample based on its observed network state

    DREAM4: Combining Genetic and Dynamic Information to Identify Biological Networks and Dynamical Models

    Get PDF
    Current technologies have lead to the availability of multiple genomic data types in sufficient quantity and quality to serve as a basis for automatic global network inference. Accordingly, there are currently a large variety of network inference methods that learn regulatory networks to varying degrees of detail. These methods have different strengths and weaknesses and thus can be complementary. However, combining different methods in a mutually reinforcing manner remains a challenge.We investigate how three scalable methods can be combined into a useful network inference pipeline. The first is a novel t-test-based method that relies on a comprehensive steady-state knock-out dataset to rank regulatory interactions. The remaining two are previously published mutual information and ordinary differential equation based methods (tlCLR and Inferelator 1.0, respectively) that use both time-series and steady-state data to rank regulatory interactions; the latter has the added advantage of also inferring dynamic models of gene regulation which can be used to predict the system's response to new perturbations.Our t-test based method proved powerful at ranking regulatory interactions, tying for first out of methods in the DREAM4 100-gene in-silico network inference challenge. We demonstrate complementarity between this method and the two methods that take advantage of time-series data by combining the three into a pipeline whose ability to rank regulatory interactions is markedly improved compared to either method alone. Moreover, the pipeline is able to accurately predict the response of the system to new conditions (in this case new double knock-out genetic perturbations). Our evaluation of the performance of multiple methods for network inference suggests avenues for future methods development and provides simple considerations for genomic experimental design. Our code is publicly available at http://err.bio.nyu.edu/inferelator/

    Quantifying the Dynamics of Coupled Networks of Switches and Oscillators

    Get PDF
    Complex network dynamics have been analyzed with models of systems of coupled switches or systems of coupled oscillators. However, many complex systems are composed of components with diverse dynamics whose interactions drive the system's evolution. We, therefore, introduce a new modeling framework that describes the dynamics of networks composed of both oscillators and switches. Both oscillator synchronization and switch stability are preserved in these heterogeneous, coupled networks. Furthermore, this model recapitulates the qualitative dynamics for the yeast cell cycle consistent with the hypothesized dynamics resulting from decomposition of the regulatory network into dynamic motifs. Introducing feedback into the cell-cycle network induces qualitative dynamics analogous to limitless replicative potential that is a hallmark of cancer. As a result, the proposed model of switch and oscillator coupling provides the ability to incorporate mechanisms that underlie the synchronized stimulus response ubiquitous in biochemical systems

    Modeling protein network evolution under genome duplication and domain shuffling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Successive whole genome duplications have recently been firmly established in all major eukaryote kingdoms. Such <it>exponential </it>evolutionary processes must have largely contributed to shape the topology of protein-protein interaction (PPI) networks by outweighing, in particular, all <it>time-linear </it>network growths modeled so far.</p> <p>Results</p> <p>We propose and solve a mathematical model of PPI network evolution under successive genome duplications. This demonstrates, from first principles, that evolutionary conservation and scale-free topology are intrinsically linked properties of PPI networks and emerge from <it>i) </it>prevailing <it>exponential </it>network dynamics under duplication and <it>ii) asymmetric divergence </it>of gene duplicates. While required, we argue that this asymmetric divergence arises, in fact, spontaneously at the level of protein-binding sites. This supports a refined model of PPI network evolution in terms of protein domains under exponential and asymmetric duplication/divergence dynamics, with multidomain proteins underlying the combinatorial formation of protein complexes. Genome duplication then provides a powerful source of PPI network innovation by promoting local rearrangements of multidomain proteins on a genome wide scale. Yet, we show that the overall conservation and topology of PPI networks are robust to extensive domain shuffling of multidomain proteins as well as to finer details of protein interaction and evolution. Finally, large scale features of <it>direct </it>and <it>indirect </it>PPI networks of <it>S. cerevisiae </it>are well reproduced numerically with only two adjusted parameters of clear biological significance (<it>i.e</it>. network effective growth rate and average number of protein-binding domains per protein).</p> <p>Conclusion</p> <p>This study demonstrates the statistical consequences of genome duplication and domain shuffling on the conservation and topology of PPI networks over a broad evolutionary scale across eukaryote kingdoms. In particular, scale-free topologies of PPI networks, which are found to be robust to extensive shuffling of protein domains, appear to be a simple consequence of the conservation of protein-binding domains under asymmetric duplication/divergence dynamics in the course of evolution.</p
    • …
    corecore