55 research outputs found

    Crystal structure of lipoate‐bound lipoate ligase 1, LipL1, from Plasmodium falciparum

    Full text link
    Plasmodium falciparum lipoate protein ligase 1 (PfLipL1) is an ATP‐dependent ligase that belongs to the biotin/lipoate A/B protein ligase family (PFAM PF03099). PfLipL1 is the only known canonical lipoate ligase in Pf and functions as a redox switch between two lipoylation routes in the parasite mitochondrion. Here, we report the crystal structure of a deletion construct of PfLipL1 (PfLipL1Δ243‐279) bound to lipoate, and validate the lipoylation activity of this construct in both an in vitro lipoylation assay and a cell‐based lipoylation assay. This characterization represents the first step in understanding the redox dependence of the lipoylation mechanism in malaria parasites. Proteins 2017; 85:1777–1783. © 2017 Wiley Periodicals, Inc.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138350/1/prot25324_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138350/2/prot25324-sup-0001-suppinfo.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138350/3/prot25324.pd

    Overexpression of biotin synthase and biotin ligase is required for efficient generation of sulfur-35 labeled biotin in E. coli

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Biotin is an essential enzyme cofactor that acts as a CO<sub>2 </sub>carrier in carboxylation and decarboxylation reactions. The <it>E. coli </it>genome encodes a biosynthetic pathway that produces biotin from pimeloyl-CoA in four enzymatic steps. The final step, insertion of sulfur into desthiobiotin to form biotin, is catalyzed by the biotin synthase, BioB. A dedicated biotin ligase (BirA) catalyzes the covalent attachment of biotin to biotin-dependent enzymes. Isotopic labeling has been a valuable tool for probing the details of the biosynthetic process and assaying the activity of biotin-dependent enzymes, however there is currently no established method for <sup>35</sup>S labeling of biotin.</p> <p>Results</p> <p>In this study, we produced [<sup>35</sup>S]-biotin from Na<sup>35</sup>SO<sub>4 </sub>and desthiobiotin with a specific activity of 30.7 Ci/mmol, two orders of magnitude higher than previously published methods. The biotinylation domain (<it>Pf</it>BCCP-79) from the <it>Plasmodium falciparum </it>acetyl-CoA carboxylase (ACC) was expressed in <it>E. coli </it>as a biotinylation substrate. We found that overexpression of the <it>E. coli </it>biotin synthase, BioB, and biotin ligase, BirA, increased <it>Pf</it>BCCP-79 biotinylation 160-fold over basal levels. Biotinylated <it>Pf</it>BCCP-79 was purified by affinity chromatography, and free biotin was liberated using acid hydrolysis. We verified that we had produced radiolabeled biologically active [<it>D</it>]-biotin that specifically labels biotinylated proteins through reuptake in <it>E. coli</it>.</p> <p>Conclusions</p> <p>The strategy described in our report provides a simple and effective method for the production of [<sup>35</sup>S]-biotin in <it>E. coli </it>based on affinity chromatography.</p

    Increased prevalence of the pfdhfr/phdhps quintuple mutant and rapid emergence of pfdhps resistance mutations at codons 581 and 613 in Kisumu, Kenya

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Anti-malarial drug resistance in Kenya prompted two drug policy changes within a decade: sulphadoxine-pyrimethamine (SP) replaced chloroquine (CQ) as the first-line anti-malarial in 1998 and artemether-lumefantrine (AL) replaced SP in 2004. Two cross-sectional studies were conducted to monitor changes in the prevalence of molecular markers of drug resistance over the period in which SP was used as the first-line anti-malarial. The baseline study was carried out from 1999-2000, shortly after implementation of SP, and the follow-up study occurred from 2003-2005, during the transition to AL.</p> <p>Materials and methods</p> <p>Blood was collected from malaria smear-positive, symptomatic patients presenting to outpatient centers in Kisumu, Kenya, during the baseline and follow-up studies. Isolates were genotyped at codons associated with SP and CQ resistance. <it>In vitro </it>IC<sub>50 </sub>values for antifolates and quinolones were determined for isolates from the follow-up study.</p> <p>Results</p> <p>The prevalence of isolates containing the <it>pfdhfr </it>N51I/C59R/S108N/<it>pfdhps </it>A437G/K540E quintuple mutant associated with SP-resistance rose from 21% in the baseline study to 53% in the follow-up study (p < 0.001). Isolates containing the <it>pfdhfr </it>I164L mutation were absent from both studies. The <it>pfdhps </it>mutations A581G and A613S/T were absent from the baseline study but were present in 85% and 61%, respectively, of isolates from the follow-up study. At follow-up, parasites with mutations at five <it>pfdhps </it>codons, 436, 437, 540, 581, and 613, accounted for 39% of isolates. The CQ resistance-associated mutations <it>pfcrt </it>K76T and <it>pfmdr1 </it>N86Y rose from 82% to 97% (p = 0.001) and 44% to 76% (p < 0.001), respectively, from baseline to follow-up.</p> <p>Conclusions</p> <p>During the period in which SP was the first-line anti-malarial in Kenya, highly SP-resistant parasites emerged, including isolates harboring <it>pfdhps </it>mutations not previously observed there. SP continues to be widely used in Kenya; however, given the highly resistant genotypes observed in this study, its use as a first-line anti-malarial should be discouraged, particularly for populations without acquired immunity to malaria. The increase in the <it>pfcrt </it>K76T prevalence, despite efforts to reduce CQ use, suggests that either these efforts are not adequate to alleviate CQ pressure in Kisumu, or that drug pressure is derived from another source, such as the second-line anti-malarial amodiaquine.</p

    The Amidase Domain of Lipoamidase Specifically Inactivates Lipoylated Proteins In Vivo

    Get PDF
    BACKGROUND:In the 1950s, Reed and coworkers discovered an enzyme activity in Streptococcus faecalis (Enterococcus faecalis) extracts that inactivated the Escherichia. coli and E. faecalis pyruvate dehydrogenase complexes through cleavage of the lipoamide bond. The enzyme that caused this lipoamidase activity remained unidentified until Jiang and Cronan discovered the gene encoding lipoamidase (Lpa) through the screening of an expression library. Subsequent cloning and characterization of the recombinant enzyme revealed that lipoamidase is an 80 kDa protein composed of an amidase domain containing a classic Ser-Ser-Lys catalytic triad and a carboxy-terminal domain of unknown function. Here, we show that the amidase domain can be used as an in vivo probe which specifically inactivates lipoylated enzymes. METHODOLOGY/PRINCIPAL FINDINGS:We evaluated whether Lpa could function as an inducible probe of alpha-ketoacid dehydrogenase inactivation using E. coli as a model system. Lpa expression resulted in cleavage of lipoic acid from the three lipoylated proteins expressed in E. coli, but did not result in cleavage of biotin from the sole biotinylated protein, the biotin carboxyl carrier protein. When expressed in lipoylation deficient E. coli, Lpa is not toxic, indicating that Lpa does not interfere with any other critical metabolic pathways. When truncated to the amidase domain, Lpa retained lipoamidase activity without acquiring biotinidase activity, indicating that the carboxy-terminal domain is not essential for substrate recognition or function. Substitution of any of the three catalytic triad amino acids with alanine produced inactive Lpa proteins. CONCLUSIONS/SIGNIFICANCE:The enzyme lipoamidase is active against a broad range of lipoylated proteins in vivo, but does not affect the growth of lipoylation deficient E. coli. Lpa can be truncated to 60% of its original size with only a partial loss of activity, resulting in a smaller probe that can be used to study the effects of alpha-ketoacid dehydrogenase inactivation in vivo

    Development of a triclosan scaffold which allows for adaptations on both the A- and B-ring for transport peptides

    Get PDF
    The enoyl acyl-carrier protein reductase (ENR) enzyme is harbored within the apicoplast of apicomplexan parasites providing a significant challenge for drug delivery, which may be overcome through the addition of transductive peptides, which facilitates crossing the apicoplast membranes. The binding site of triclosan, a potent ENR inhibitor, is occluded from the solvent making the attachment of these linkers challenging. Herein, we have produced 3 new triclosan analogs with bulky A- and B-ring motifs, which protrude into the solvent allowing for the future attachment of molecular transporters for delivery

    Clinically relevant atovaquone-resistant human malaria parasites fail to transmit by mosquito.

    Get PDF
    Long-acting injectable medications, such as atovaquone, offer the prospect of a "chemical vaccine" for malaria, combining drug efficacy with vaccine durability. However, selection and transmission of drug-resistant parasites is of concern. Laboratory studies have indicated that atovaquone resistance disadvantages parasites in mosquitoes, but lack of data on clinically relevant Plasmodium falciparum has hampered integration of these variable findings into drug development decisions. Here we generate atovaquone-resistant parasites that differ from wild type parent by only a Y268S mutation in cytochrome b, a modification associated with atovaquone treatment failure in humans. Relative to wild type, Y268S parasites evidence multiple defects, most marked in their development in mosquitoes, whether from Southeast Asia (Anopheles stephensi) or Africa (An. gambiae). Growth of asexual Y268S P. falciparum in human red cells is impaired, but parasite loss in the mosquito is progressive, from reduced gametocyte exflagellation, to smaller number and size of oocysts, and finally to absence of sporozoites. The Y268S mutant fails to transmit from mosquitoes to mice engrafted with human liver cells and erythrocytes. The severe-to-lethal fitness cost of clinically relevant atovaquone resistance to P. falciparum in the mosquito substantially lessens the likelihood of its transmission in the field

    Lipoic Acid Metabolism in Microbial Pathogens

    No full text
    Summary: Lipoic acid [(R)-5-(1,2-dithiolan-3-yl)pentanoic acid] is an enzyme cofactor required for intermediate metabolism in free-living cells. Lipoic acid was discovered nearly 60 years ago and was shown to be covalently attached to proteins in several multicomponent dehydrogenases. Cells can acquire lipoate (the deprotonated charge form of lipoic acid that dominates at physiological pH) through either scavenging or de novo synthesis. Microbial pathogens implement these basic lipoylation strategies with a surprising variety of adaptations which can affect pathogenesis and virulence. Similarly, lipoylated proteins are responsible for effects beyond their classical roles in catalysis. These include roles in oxidative defense, bacterial sporulation, and gene expression. This review surveys the role of lipoate metabolism in bacterial, fungal, and protozoan pathogens and how these organisms have employed this metabolism to adapt to niche environments

    Using Lipoamidase as a Novel Probe To Interrogate the Importance of Lipoylation in Plasmodium falciparum

    No full text
    Lipoate is an essential cofactor for a small number of enzymes that are important for central metabolism. Malaria parasites require lipoate scavenged from the human host for growth and survival; however, it is not known why this cofactor is so important. To address this question, we designed a probe of lipoate activity based on the bacterial enzyme lipoamidase (Lpa). Expression of this probe in different subcellular locations allowed us to define the mitochondrion as the compartment housing essential lipoate metabolism. To gain further insight into the specific uses of lipoate in the mitochondrion, we designed a series of catalytically attenuated probes and employed the probes in conjunction with a chemical bypass system. These studies suggest that two lipoylated proteins are required for parasite survival. We were able to express Lpa with different catalytic abilities in different subcellular compartments and driven by different promoters, demonstrating the versatility of this tool and suggesting that it can be used as a probe of lipoate metabolism in other organisms.Lipoate is a redox active cofactor that is covalently bound to key enzymes of oxidative metabolism. Plasmodium falciparum is auxotrophic for lipoate during the intraerythrocytic stages, but it is not known whether lipoate attachment to protein is required or whether attachment is required in a specific subcellular compartment of the parasite. To address these questions, we used an enzyme called lipoamidase (Lpa) as a probe of lipoate metabolism. Lpa was first described in Enterococcus faecalis, and it specifically cleaves protein-bound lipoate, inactivating enzymes requiring this cofactor. Enzymatically active Lpa could be expressed in the cytosol of P. falciparum without any effect on protein lipoylation or parasite growth. Similarly, Lpa could be expressed in the apicoplast, and although protein lipoylation was reduced, parasite growth was not inhibited. By contrast, while an inactive mutant of Lpa could be expressed in the mitochondrion, the active enzyme could not. We designed an attenuated mutant of Lpa and found that this enzyme could be expressed in the parasite mitochondrion, but only in conjunction with a chemical bypass system. These studies suggest that acetyl-CoA production and a cryptic function of the H protein are both required for parasite survival. Our study validates Lpa as a novel probe of metabolism that can be used in other systems and provides new insight into key aspects of mitochondrial metabolism that are responsible for lipoate auxotrophy in malaria parasites

    Growth of lipoylation deficient <i>E. coli</i> expressing Lpa and Lpa active site mutants.

    No full text
    <p>Growth assay of TM136 strain cells <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0007392#pone.0007392-Morris1" target="_blank">[16]</a> expressing Lpa (squares), Lpa S235A (upward triangles), and Lpa S259A (circles). Growth curves at 37°C (solid symbols) and 20°C (open symbols are shown with cultures induced with 0.4 mM IPTG highlighted in red. In each condition, the growth curve corresponding to cells expressing wild type Lpa is shown with a thickened line.</p
    corecore