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Abstract
The enoyl acyl-carrier protein reductase (ENR) enzyme is harboured within the apicoplast of
apicomplexan parasites providing a significant challenge for drug delivery, which may be
overcome through the addition of transductive peptides, which facilitates crossing the apicoplast
membranes. The binding site of triclosan, a potent ENR inhibitor, is occluded from the solvent
making the attachment of these linkers challenging. Herein, we have produced 3 new triclosan
analogues with bulky A- and B-ring motifs, which protrude into the solvent allowing for the future
attachment of molecular transporters for delivery.
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The Toxoplasma gondii (T. gondii) parasite and other apicomplexans rely on the fatty acid
synthesis type II pathway (FAS II), which is prokaryotic-like and distinct from the
eukaryotic fatty acid type I pathway (FAS I). FAS II is carried out by discrete mono-
functional enzymes, whereas FAS I is typically carried out by one large polypeptide
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complex.1,2 This distinction has made this pathway a promising target for antimicrobial drug
design.3,4 The FAS II pathway is composed of 4 enzymes in an iterative process of fatty acid
elongation, in which the enoyl acyl-carrier protein reductase (ENR) has gained the most
attention with a range of drugs developed against it. These include the anti-tuberculosis drug
isoniazid, the diazaborine family and triclosan which is a common antimicrobial found in,
amongst other things, toothpastes, mouthwashes and chopping boards. 5,6,7,8 Triclosan has
been shown to be a very potent inhibitor which binds at the core of the ENR enzyme,
making Ͳ stacking interactions with the reduced NAD+ cofactor.9 Its binding mode has been
characterised as a two state process, where it primarily interacts with the NAD+ cofactor
followed by an ͣ -helix packing over the triclosan, burying it away from the solvent forming
a slow tight binding complex.10 Triclosan is a relatively simple scaffold which has been
extensively modified by a number of groups to improve its ADMET properties.

Significant progress has been made toward the development of both T. gondii and P.
falciparum medicines through the discovery of a FAS II pathway residing within their
apicoplast.11,12 This was particularly pertinent when it was discovered that the P.
falciparum, E. tenella and T. gondii ENR enzyme could be inhibited by the potent
antibacterial triclosan.13,14,15 Since this discovery, a number of groups have developed a
range of triclosan analogues which have shown potent inhibitory effects often with
improved ADMET properties.16-21 Although studies have reported that FASII is not
essential for blood stage survival of P. falciparum it does play an important role in liver-
stage development. Moreover, triclosan may have an off target effect within the blood stage
of its lifecycle.22,23

A significant problem with these inhibitors is the need to cross several membranes imposed
by the host cell, parasite and apicoplast in order to reach the ENR enzyme target. This has
been aided with some success through the addition of a cleavable linker and transductive
peptide, although further work in this area is needed.24 In order to establish if a more stable,
non releasable molecular transporter can be attached to the A- or B-ring of triclosan in a way
that does not significantly alter binding to ENR, we have taken two of our previously
successful triclosan modifications which resulted in extensions on the A- and B- ring and
combined them. In particular, isoxazole groups were chosen since they retained good
potency whilst improving the physiochemical properties (Stec et al., in press). This has
resulted in a set of three compounds with potent inhibitory effects and isoxazole extensions,
which allow through the incorporation of functional groups to be further utilised for the
addition of a linker and transductive peptide or a non-releaseable linker.

The compounds were generated by reacting 4–Hydroxy–3–methoxybenzonitrile with 3–
chloro–4–fluorobenzaldehyde to give intermediate 1, which was readily converted to the
imidoly chloride 3 in a two-step protocol.25 Subsequent reaction of 3 with TBDPS protected
3-butyn-1-ol and 1-pentyne afforded the corresponding isoxazoles 4 and 5.26 The final
compounds, 6 and 7, were prepared by the modified demethylation procedure27 with BBr3,
employing 4 and 5 as the starting materials.

Reduction of the nitrile 5 provided amine intermediate 8, which was further elaborated
through amide bond formation with 5-methylisoxazole-3-carboxylic acid and demethylation
to give the final product 10.28 Full details on compound synthesis are in the supplemental
material.

Inhibitory assays for parasite replication, toxicity against fibroblast host cell tests methods,
and enzyme assays were performed as previously described (Stec et al., in press).21,29-32
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A major hurdle in targeting pathways which reside within the apicoplast is the need for the
inhibitor to cross several membrane barriers. In order to avoid this difficulty, we adapted the
triclosan scaffold to contain bulky substituents on both the A- and B–rings that were
amenable to the addition of non-releasable transport peptides ((Table 1) (Figure 1A)). The
relatively small binding pocket means that these non-releasable linkers must sit outside the
cavity, exposed to the solvent to avoid any steric hindrance upon inhibitor binding.

In the first instance, we used a previously identified modification on the triclosan B-ring
whereby a substituted-isoxazole group was added at the 4ᓉ-position.32 This group makes
favourable interactions around the entrance of the triclosan binding site and extends out
towards the solvent.

In order to test whether further modifications could be placed at the exit of the binding site,
the substituent on the isoxazole ring was replaced with either a 5-propyl or 5-ethyl alcohol
group. Although only a minimal improvement in the MIC50; from 10 ͮ M to 4 ͮ M (6) and
7.5 ͮ M (7) is seen, no detrimental effect to the enzymatic activity is observed. Importantly,
docking studies have shown that both of these extensions can clearly protrude from the
hydrophobic binding site towards a more solvent exposed area of the enzyme (Figure 1B).
Further structural modification of the isoxazole ring could allow for conjugation to a
delivery peptide via either a releasable or non-releasable linker.

A more challenging aspect of the project was to produce a modification on the A-ring of
triclosan, which occupies an enclosed hydrophobic region, resulting in its exposure to the
outside solvent thus allowing for its attachment to a delivery peptide. This is due to the A-
ring of triclosan being buried within the binding site, whereas the B-ring is at the base of a
channel which leads to the solvent. The tight packing about the A-ring within the ENR
enzyme binding site often makes modifications about this ring difficult as there are several
residues predicted to make steric clashes with these modified structures, as seen in docking
simulations. It is important to note however that most modeling programs do not account for
protein flexibility within the binding site.33

A solution to this problem was suggested through previous studies of compound 33 (Figure
2(Stec et al., in press)). This compound was predicted to bind in a reverse mode to that of
triclosan, i.e. the A-ring would take the position of the B-ring and vice versa, by the FlexX
docking program. This altered pose was observed due to the large substituent on the A-ring
causing severe steric clashes within the binding site which could only be relieved through
the reverse binding mode. However, by allowing for flexibility within the active site, in
particular the movement of Phe243 about Cͤ within the TgENR/NAD+ complex using the
Swiss PDB Viewer the original binding mode was seen.34 Those orientations that could
accommodate the greater steric bulk of our hybrid compounds resulted in a more open
binding site such that the A-ring modification is now exposed to the exterior solvent (Figure
1C, D). We have previously seen the movement of Phe243 about the Cͤ, in a manner similar
to that of the modeling in a TgENR co-crystal structure for a different family of inhibitors
(data not shown). Subsequent docking of the compound series was carried out using
AutoDock 4.235 or Macromodel version 8.136 and PDB IDs 2O2S20 and 1LX637 available
from the RCSB Protein DataBank.

A hybrid triclosan scaffold was then designed which contained both A and B ring
modifications allowing for the compound to be exposed to the solvent on both ends of the
molecular scaffold (10). Modeling studies for this compound with increased bulk on both
the A- and B-rings does not permit the reverse mode binding seen for the compound 33, but
instead adopts the position shown in Figure 1. Importantly, this compound, despite its
bulkier nature, showed no decrease in MIC50 value but a slight increase in IC50 value from
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29 nM (6) and 19 nM (compound 33) to 137 nM (10). This increase in IC50 to 137 nM is
still therapeutically viable and more importantly, the modifications to both the A and B-ring
has resulted in a compound which is amenable to further structural modifications to improve
both binding and delivery via releasable/non-releasable trans-peptide linkers. In vitro
cytotoxicity tests also showed no noticeable increase in toxicity based on the assay used.
Growth was measured using a type 1 T. gondii parasite tachyzoite RH stably transfected
with the yellow fluorescent protein (RH-YFP) gene, with the relative fluorescence
intensities of the parasites being directly correlated with parasite viability and numbers
(Figure 3).

The activity of the 3 compounds (6, 7 & 10) were also tested against two different strains of
P. falciparum (D6 & TM91C235) in a dose-response growth inhibition assay. Only 6
showed modest activity against the drug sensitive strain, D6, but no activity against the drug
resistant strain, TM91C235 (Table 1). It is likely that the non-essential nature of the FASII
pathway within the blood stage of the P. falciparum is responsible for the poor inhibitory
effect of these compounds within our assay.22 Further work will determine the potency of
these inhibitors against the liver stage parasite which would be important in stopping
recrudescence of the Plasmodium parasite.

These results have shown how the triclosan scaffold can be modified to result in both the A-
and B-rings being exposed to the exterior solvent without a significant loss in potency or
detectable increase in toxicity. This is important since it allows for further structural
modifications to be made which are not constrained by the size of the binding site. This also
allows for the addition of chemical functionalities which may aid in the delivery of triclosan
into the apicoplast, a significant problem in current drug design. Moreover, the bradyzoite
form of T. gondii is currently impossible to treat with current therapeutics due to the barriers
put in place by the cyst form of the parasite. Further work will be carried out to use this
scaffold as a basis for modifications by various linker elements which may aid in drug
delivery and targeting of a compound whose potency is in the nanomolar range.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
A) Overlay of triclosan and 10 within the ENR active site showing the similar mode of
binding for the common A and B-ring motifs, colored red, blue, green and yellow (10) or
magenta (triclosan) for oxygen, nitrogen, chlorine and carbon, respectively. B) Surface view
of the modeled TgENR/NAD+/10 structure with the modified B-ring protruding into the
solvent. C) Modeling of 10 within the TgENR/NAD+/triclosan crystal structure where
Phe241 adopts a “closed” position causing steric hindrance. D) Modeling of 10 within the
modified TgENR crystal structure where Phe241 has adopted an “open” position exposing
the A-ring to the solvent.
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Figure 2.
Structural formula of compound 33
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Figure 3.
Efficacy and Absence of Toxicity of compounds against T. gondii tachyzoites. A) Growth of
RH-YFP in human Foreskin fibroblasts (HFF), measured as fluorescence intensity. HFF
infected with RH-YFP tachyzoites and fluorescence intensities were measured after 72
hours. Non infected fibroblasts that provided a baseline control, HFF cells infected with
3200 RH-YFP tachyzoites treated with pyrimethamine/sulfadiazine (p/s) or 0.1% DMSO
serve as positive and negative controls respectively. B) Inhibitory effect of the compounds
on RH-YFP. HFF cells were infected with 3200 RH-YFP tachyzoites, compounds at various
concentrations were added 1 hour after infection. The fluorescence intensities of the samples
as reflecting numbers of parasites were measured 72 hours after addition of compounds. C)
Effect of the compounds on HFF viability. The viability of host HFF cells was assessed by
Wst-1 staining, after 72 hours of incubation of compounds at 10 mM concentration. Effect
of various concentrations of DMSO present in the HFF culture medium shows varying
amounts of toxicity.
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Scheme 1.
Synthesis of triclosan analogues bearing isoxazole group on ring B. Reagents and
conditions: (a) 3-chloro-4-fluorobenzaldehyde, Cs2CO3, DMF, 95 °C, 16 h, 72%; (b) H2O-
EtOH-ice (1:1:2), H2NOH·HCl, 50% aq NaOH, room temp, 1.5 h, 79%; (c) NCS, DMF,
room temp, 1.5 h, 100%; (d) sodium ascorbate, CuSO4·5H2O, KHCO3, 1-alkyne, t-BuOH-
H2O (1:1), room temp, 1 h. For 4, R = CH2CH2OTBDPS, 51%; for 5, R = n-Pr, 50%; (e)
For 6: CH2Cl2, BBr3 (4.0 eq), −78 °C to room temp, 3 h, 35%. For 7: CH2Cl2, BBr3 (8.0
eq), −78 °C to room temp, overnight, 61%.
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Scheme 2.
Synthesis of triclosan analogues bearing isoxazole groups on ring A and B. Reagents and
conditions: (a) 1. LiAlH4, Et2O, −78 °C to 0 °C, 2.5 h; 2. H2O, 1.0 M NaOH, 50%; (b) 5-
methylisoxazole-3-carboxylic acid, CH2Cl2, HOBt, EDCI, Et3N, room temp, 17 h then H2O,
100% of crude material; (c) CH2Cl2, BBr3 (8.0 eq), −78 °C to room temp within 1 h, then
room temp for 5 h, 32%.
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Table 1

Activity data for new diaryl ethers inhibitors of Enoyl Reductase

Notebook
ID Structure

Parasite tissue
challenge assay TgENR Enzyme assay

P. falciparum blood stage
dose response

(ng/ml)

MIC50
(ͮM)

Toxicity a
(ͮM)

Conc.(ͮM)
/Inhibition

(%) b

IC50
(nM)

D6 TM91C235

Triclosan 5 >10 98 15 N/A N/A

6 ~4 >10 1/94 29 >2443 >N/A

7 ~8 >10 1/94 34 >10000 >10000

10 ~4 >10 1/89 137 >10000 >10000

a
Toxicity to human foreskin fibroblasts.

b
At compound concentration (ͮM), enzyme inhibition percentage (%).
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