788 research outputs found
Information Content in Data Sets for a Nucleated-Polymerization Model
We illustrate the use of tools (asymptotic theories of standard error
quantification using appropriate statistical models, bootstrapping, model
comparison techniques) in addition to sensitivity that may be employed to
determine the information content in data sets. We do this in the context of
recent models [23] for nucleated polymerization in proteins, about which very
little is known regarding the underlying mechanisms; thus the methodology we
develop here may be of great help to experimentalists
"Barber pole turbulence" in large aspect ratio Taylor-Couette flow
Investigations of counter-rotating Taylor-Couette flow (TCF) in the narrow
gap limit are conducted in a very large aspect ratio apparatus. The phase
diagram is presented and compared to that obtained by Andereck et al. The
spiral turbulence regime is studied by varying both internal and external
Reynolds numbers. Spiral turbulence is shown to emerge from the fully turbulent
regime via a continuous transition appearing first as a modulated turbulent
state, which eventually relaxes locally to the laminar flow. The connection
with the intermittent regimes of the plane Couette flow (pCf) is discussed
On the decay of turbulence in plane Couette flow
The decay of turbulent and laminar oblique bands in the lower transitional
range of plane Couette flow is studied by means of direct numerical simulations
of the Navier--Stokes equations. We consider systems that are extended enough
for several bands to exist, thanks to mild wall-normal under-resolution
considered as a consistent and well-validated modelling strategy. We point out
a two-stage process involving the rupture of a band followed by a slow
regression of the fragments left. Previous approaches to turbulence decay in
wall-bounded flows making use of the chaotic transient paradigm are
reinterpreted within a spatiotemporal perspective in terms of large deviations
of an underlying stochastic process.Comment: ETC13 Conference Proceedings, 6 pages, 5 figure
Suppression of the thermal hysteresis in magnetocaloric MnAs thin film by highly charged ion bombardment
We present the investigation on the modifications of structural and magnetic
properties of MnAs thin film epitaxially grown on GaAs induced by slow highly
charged ions bombardment under well-controlled conditions. The ion-induced
defects facilitate the nucleation of one phase with respect to the other in the
first-order magneto-structural MnAs transition with a consequent suppression of
thermal hysteresis without any significant perturbation on the other structural
and magnetic properties. In particular, the irradiated film keeps the giant
magnetocaloric effect at room temperature opening new perspective on magnetic
refrigeration technology for everyday use
Nanoscale structuring of tungsten tip yields most coherent electron point-source
This report demonstrates the most spatially-coherent electron source ever
reported. A coherence angle of 14.3 +/- 0.5 degrees was measured, indicating a
virtual source size of 1.7 +/-0.6 Angstrom using an extraction voltage of 89.5
V. The nanotips under study were crafted using a spatially-confined,
field-assisted nitrogen etch which removes material from the periphery of the
tip apex resulting in a sharp, tungsten-nitride stabilized, high-aspect ratio
source. The coherence properties are deduced from holographic measurements in a
low-energy electron point source microscope with a carbon nanotube bundle as
sample. Using the virtual source size and emission current the brightness
normalized to 100 kV is found to be 7.9x10^8 A/sr cm^2
Transient growth in Taylor-Couette flow
Transient growth due to non-normality is investigated for the Taylor-Couette
problem with counter-rotating cylinders as a function of aspect ratio eta and
Reynolds number Re. For all Re < 500, transient growth is enhanced by
curvature, i.e. is greater for eta < 1 than for eta = 1, the plane Couette
limit. For fixed Re < 130 it is found that the greatest transient growth is
achieved for eta between the Taylor-Couette linear stability boundary, if it
exists, and one, while for Re > 130 the greatest transient growth is achieved
for eta on the linear stability boundary. Transient growth is shown to be
approximately 20% higher near the linear stability boundary at Re = 310, eta =
0.986 than at Re = 310, eta = 1, near the threshold observed for transition in
plane Couette flow. The energy in the optimal inputs is primarily meridional;
that in the optimal outputs is primarily azimuthal. Pseudospectra are
calculated for two contrasting cases. For large curvature, eta = 0.5, the
pseudospectra adhere more closely to the spectrum than in a narrow gap case,
eta = 0.99
Low Energy Electron Point Projection Microscopy of Suspended Graphene, the Ultimate "Microscope Slide"
Point Projection Microscopy (PPM) is used to image suspended graphene using
low-energy electrons (100-200eV). Because of the low energies used, the
graphene is neither damaged or contaminated by the electron beam. The
transparency of graphene is measured to be 74%, equivalent to electron
transmission through a sheet as thick as twice the covalent radius of
sp^2-bonded carbon. Also observed is rippling in the structure of the suspended
graphene, with a wavelength of approximately 26 nm. The interference of the
electron beam due to the diffraction off the edge of a graphene knife edge is
observed and used to calculate a virtual source size of 4.7 +/- 0.6 Angstroms
for the electron emitter. It is demonstrated that graphene can be used as both
anode and substrate in PPM in order to avoid distortions due to strong field
gradients around nano-scale objects. Graphene can be used to image objects
suspended on the sheet using PPM, and in the future, electron holography
Electronic temperatures, densities and plasma X-ray emission of a 14.5 GHz Electron-Cyclotron Resonance Ion Source
We have performed a systematic study of the Bremsstrahlung emission from the
electrons in the plasma of a commercial 14.5 GHz Electron-Cyclotron Resonance
Ion Source. The electronic spectral temperature and the product of ionic and
electronic densities of the plasma are measured by analyzing the Bremsstrahlung
spectra recorded for several rare gases (Ar, Kr, Xe) as a function of the
injected power. Within our uncertainty, we find an average temperature of ? 48
keV above 100W, with a weak dependency on the injected power and gas
composition. Charge state distributions of extracted ion beams have been
determined as well, providing a way to disentangle the ionic density from the
electronic density. Moreover X-ray emission from highly charged argon ions in
the plasma has been observed with a high-resolution mosaic crystal
spectrometer, demonstrating the feasibility for high-precision measurements of
transition energies of highly charged ions, in particular of the magnetic
dipole (M1) transition of He-like of argon ions
- …