4 research outputs found

    Abstracts from the Food Allergy and Anaphylaxis Meeting 2016

    Get PDF

    Subjects develop tolerance to Pru p 3 but respiratory allergy to Pru p 9: A large study group from a peach exposed population.

    No full text
    Peach tree allergens are present in fruit, pollen, branches, and leaves, and can induce systemic, respiratory, cutaneous, and gastrointestinal symptoms. We studied the capacity of peach fruit/Pru p 1, Pru p 3, Pru p 4, Pru p 7 and peach pollen/Pru p 9 for inducing symptoms following oral or respiratory exposure in a large group of subjects. We included 716 adults (aged 21 to 83 y.o.) exposed to peach tree pollen and fruit intake in the study population. Participants completed a questionnaire and were skin tested with a panel of inhalant and food allergens, including peach tree pollen, Pru p 9 and peach fruit skin extract. Immunoglobulin E antibodies (SIgE) to Pru p 1, Pru p 3, Pru p 4 and Pru p 7 were quantified. Sensitised subjects underwent oral food challenge with peach fruit and nasal provocation test with peach tree pollen and Pru p 9. The prevalence of sensitisation to peach fruit was 5% and most of these had SIgE to Pru p 3, with a very low proportion to Pru p 4 SIgE and no SIgE to Pru p 1 and Pru p 7. In only 1.8%, anaphylaxis was the clinical entity induced. Cases with positive skin tests to peach and SIgE to Pru p 3 presented a good tolerance after oral challenge with peach fruit. The prevalence of skin sensitisation to peach tree pollen was 22%, with almost half recognising Pru p 9. This induced respiratory symptoms in those evaluated by nasal provocation. In a large population group exposed to peach fruit and peach tree pollen, most individuals were tolerant, even in those with SIgE to Pru p 3. A positive response to Pru p 9 was associated with respiratory allergy

    NEOTROPICAL ALIEN MAMMALS: a data set of occurrence and abundance of alien mammals in the Neotropics

    No full text
    Biological invasion is one of the main threats to native biodiversity. For a species to become invasive, it must be voluntarily or involuntarily introduced by humans into a nonnative habitat. Mammals were among first taxa to be introduced worldwide for game, meat, and labor, yet the number of species introduced in the Neotropics remains unknown. In this data set, we make available occurrence and abundance data on mammal species that (1) transposed a geographical barrier and (2) were voluntarily or involuntarily introduced by humans into the Neotropics. Our data set is composed of 73,738 historical and current georeferenced records on alien mammal species of which around 96% correspond to occurrence data on 77 species belonging to eight orders and 26 families. Data cover 26 continental countries in the Neotropics, ranging from Mexico and its frontier regions (southern Florida and coastal-central Florida in the southeast United States) to Argentina, Paraguay, Chile, and Uruguay, and the 13 countries of Caribbean islands. Our data set also includes neotropical species (e.g., Callithrix sp., Myocastor coypus, Nasua nasua) considered alien in particular areas of Neotropics. The most numerous species in terms of records are from Bos sp. (n = 37,782), Sus scrofa (n = 6,730), and Canis familiaris (n = 10,084); 17 species were represented by only one record (e.g., Syncerus caffer, Cervus timorensis, Cervus unicolor, Canis latrans). Primates have the highest number of species in the data set (n = 20 species), partly because of uncertainties regarding taxonomic identification of the genera Callithrix, which includes the species Callithrix aurita, Callithrix flaviceps, Callithrix geoffroyi, Callithrix jacchus, Callithrix kuhlii, Callithrix penicillata, and their hybrids. This unique data set will be a valuable source of information on invasion risk assessments, biodiversity redistribution and conservation-related research. There are no copyright restrictions. Please cite this data paper when using the data in publications. We also request that researchers and teachers inform us on how they are using the data

    NEOTROPICAL XENARTHRANS: a data set of occurrence of xenarthran species in the Neotropics

    No full text
    Xenarthrans—anteaters, sloths, and armadillos—have essential functions for ecosystem maintenance, such as insect control and nutrient cycling, playing key roles as ecosystem engineers. Because of habitat loss and fragmentation, hunting pressure, and conflicts with domestic dogs, these species have been threatened locally, regionally, or even across their full distribution ranges. The Neotropics harbor 21 species of armadillos, 10 anteaters, and 6 sloths. Our data set includes the families Chlamyphoridae (13), Dasypodidae (7), Myrmecophagidae (3), Bradypodidae (4), and Megalonychidae (2). We have no occurrence data on Dasypus pilosus (Dasypodidae). Regarding Cyclopedidae, until recently, only one species was recognized, but new genetic studies have revealed that the group is represented by seven species. In this data paper, we compiled a total of 42,528 records of 31 species, represented by occurrence and quantitative data, totaling 24,847 unique georeferenced records. The geographic range is from the southern United States, Mexico, and Caribbean countries at the northern portion of the Neotropics, to the austral distribution in Argentina, Paraguay, Chile, and Uruguay. Regarding anteaters, Myrmecophaga tridactyla has the most records (n = 5,941), and Cyclopes sp. have the fewest (n = 240). The armadillo species with the most data is Dasypus novemcinctus (n = 11,588), and the fewest data are recorded for Calyptophractus retusus (n = 33). With regard to sloth species, Bradypus variegatus has the most records (n = 962), and Bradypus pygmaeus has the fewest (n = 12). Our main objective with Neotropical Xenarthrans is to make occurrence and quantitative data available to facilitate more ecological research, particularly if we integrate the xenarthran data with other data sets of Neotropical Series that will become available very soon (i.e., Neotropical Carnivores, Neotropical Invasive Mammals, and Neotropical Hunters and Dogs). Therefore, studies on trophic cascades, hunting pressure, habitat loss, fragmentation effects, species invasion, and climate change effects will be possible with the Neotropical Xenarthrans data set. Please cite this data paper when using its data in publications. We also request that researchers and teachers inform us of how they are using these data
    corecore