10,457 research outputs found

    Chemical Abundances from the Continuum

    Full text link
    The calculation of solar absolute fluxes in the near-UV is revisited, discussing in some detail recent updates in theoretical calculations of bound-free opacity from metals. Modest changes in the abundances of elements such as Mg and the iron-peak elements have a significant impact on the atmospheric structure, and therefore self-consistent calculations are necessary. With small adjustments to the solar photospheric composition, we are able to reproduce fairly well the observed solar fluxes between 200 and 270 nm, and between 300 and 420 nm, but find too much absorption in the 270-290 nm window. A comparison between our reference 1D model and a 3D time-dependent hydrodynamical simulation indicates that the continuum flux is only weakly sensitive to 3D effects, with corrections reaching <10% in the near-UV, and <2% in the optical.Comment: 10 pages, 5 figures, to appear in the proceedings of the conference A Stellar Journey, a symposium in celebration of Bengt Gustafsson's 65th birthday, June 23-27, 2008, Uppsal

    Optical Surface Photometry of a Sample of Disk Galaxies. II Structural Components

    Full text link
    This work presents the structural decomposition of a sample of 11 disk galaxies, which span a range of different morphological types. The U, B, V, R, and I photometric information given in Paper I (color and color-index images and luminosity, ellipticity, and position-angle profiles) has been used to decide what types of components form the galaxies before carrying out the decomposition. We find and model such components as bulges, disks, bars, lenses and rings.Comment: 14 figures. Accepted for publication in A&

    Line formation in solar granulation VI. [C I], C I, CH and C2 lines and the photospheric C abundance

    Full text link
    The solar photospheric carbon abundance has been determined from [C I], C I, CH vibration-rotation, CH A-X electronic and C2 Swan electronic lines by means of a time-dependent, 3D, hydrodynamical model of the solar atmosphere. Departures from LTE have been considered for the C I lines. These turned out to be of increasing importance for stronger lines and are crucial to remove a trend in LTE abundances with the strengths of the lines. Very gratifying agreement is found among all the atomic and molecular abundance diagnostics in spite of their widely different line formation sensitivities. The mean of the solar carbon abundance based on the four primary abundance indicators ([C I], C I, CH vibration-rotation, C_2 Swan) is log C = 8.39 +/- 0.05, including our best estimate of possible systematic errors. Consistent results also come from the CH electronic lines, which we have relegated to a supporting role due to their sensitivity to the line broadening. The new 3D based solar C abundance is significantly lower than previously estimated in studies using 1D model atmospheres.Comment: Accepted for A&A, 13 page

    Image Slicer Performances from a Demonstrator for the SNAP/JDEM Mission - Part I: Wavelength Accuracy

    Full text link
    A well-adapted visible and infrared spectrograph has been developed for the SNAP (SuperNova/Acceleration Probe) experiment proposed for JDEM. The instrument should have a high sensitivity to see faint supernovae but also a good redshift determination better than 0.003(1+z) and a precise spectrophotometry (2%). An instrument based on an integral field method with the powerful concept of imager slicing has been designed. A large prototyping effort has been performed in France which validates the concept. In particular a demonstrator reproducing the full optical configuration has been built and tested to prove the optical performances both in the visible and in the near infrared range. This paper is the first of two papers. The present paper focus on the wavelength measurement while the second one will present the spectrophotometric performances. We adress here the spectral accuracy expected both in the visible and in the near infrared range in such configuration and we demonstrate, in particular, that the image slicer enhances the instrumental performances in the spectral measurement precision by removing the slit effect. This work is supported in France by CNRS/INSU/IN2P3 and by the French spatial agency (CNES) and in US by the University of California.Comment: Submitted to PAS

    CLIWOC multilingual meteorological dictionary

    Get PDF
    This dictionary is the first attempt to express the wealth of archaic logbook wind force terms in a form that is comprehensible to the modern-day reader. Oliver and Kington (1970) and Lamb (1982) have drawn attention to the importance of logbooks in climatic studies, and Lamb (1991) offered a conversion scale for early eighteenth century English wind force terms, but no studies have thus far pursued the matter to any greater depth. This text attempts to make good this deficiency, and is derived from the research undertaken by the CLIWOC project1 in which British, Dutch, French and Spanish naval and merchant logbooks from the period 1750 to 1850 were used to derive a global database of climatic information. At an early stage in the project it was apparent that many of the logbook weather terms, whilst conforming to a conventional vocabulary, possessed meanings that were unclear to twenty-first century readers or had changed over time. This was particularly the case for the important element of wind force; but no special plea is entered for the evolution in nautical vocabulary, which often reflected more wide-ranging changes in the respective native languages.The key objective was to translate the archaic vocabulary of the late eighteenth and early nineteenth century mariner into expressions directly comparable with the Beaufort Scale (see Appendix I). Only then could the projects scientific programme be embarked upon. This dictionary is the result of the largest undertaking into logbook studies that has yet been carried out. Several thousand logbooks from British, Dutch, French and Spanish archives were examined, and the exercise offered a unique opportunity to explore the vocabulary of the one hundred year period beginning in 1750. The logbooks from which the raw data have been abstracted range widely across the North and South Atlantic and the Indian Oceans. Only the Pacific, largely in consequence of the paucity of regular naval activity in that area, is not well represented. The range of climates encountered in this otherwise wide geographic domain gives ample opportunity for the full range of the mariners nautical weather vocabulary to be assessed, from the calms of the Equatorial regions, through the gales of the mid-latitude systems to the fearsome storms of the tropical latitudes. The Trade Winds belts, the Doldrums, the unsettled mid-latitudes, even the icy wastes of the high latitudes, are all embraced in this study. It is not here intended to pass any judgements on the climatological record of the logbooks, and this text seeks only to provide a means of understanding archaic wind force terms and, other than to indicate those items that were not commonly used, no information is given on the frequency with which different terms appeared in the logbooks. Attention is, furthermore, confined to Dutch, English, French and Spanish because these once great imperial powers were the only nations able to support wide-ranging ocean-going fleets with their attendant collections of logbooks and documents over this long period of time. The work is offered to the wider academic community in the hope that they will prove to be of as much value as it has been to the CLIWOC team

    On the Radii of Extrasolar Giant Planets

    Full text link
    We have computed evolutionary models for extrasolar planets which range in mass from 0.1 to 3.0 Jovian Masses, and which range in equilibrium temperature from 113 K to 2000 K. We present four sequences of models, designed to show the structural effects of a solid core and of internal heating due to the conversion of kinetic to thermal energy at pressures of tens of bars. The model planetary radii are intended for comparisons with radii derived from observations of transiting extrasolar planets. To provide such comparisons, we expect that of order 10 transiting planets with orbital periods less than 200 days can be detected around bright (V<10) main-sequence stars for which accurate, well-sampled radial velocity measurements can be readily accumulated. Through these observations, structural properties of the planets will be derivable, particularly for low-mass, high-temperature planets. Implications regarding the transiting companion to OGLE-TR-56 recently announced by Konacki et al. are discussed. With regard to the confirmed transiting planet, HD 209458b, we find, in accordance with other recent calculations, that models without internal heating predict a radius that is 35 percent smaller than the observed radius. We explore the possibility that HD 209458b owes its large size to dissipation of energy arising from ongoing tidal circularization of the orbit. We show that residual scatter in the current radial velocity data set for HD 209458b is consistent with the presence of an as-of-yet undetected second companion, and that further radial velocity monitoring of the star is indicated.Comment: 23 pages, 3 figures, accepted by Astrophysical Journa

    The Infrared Massive Stellar Content of M83

    Full text link
    We present an analysis of archival Spitzer images and new ground-based and Hubble Space Telescope (HST) near-infrared (IR) and optical images of the field of M83 with the goal of identifying rare, dusty, evolved massive stars. We present point source catalogs consisting of 3778 objects from SpitzerSpitzer Infrared Array Camera (IRAC) Band 1 (3.6 μ\mum) and Band 2 (4.5 μ\mum), and 975 objects identified in Magellan 6.5m FourStar near-IR JJ and KsK_{\rm s} images. A combined catalog of coordinate matched near- and mid-IR point sources yields 221 objects in the field of M83. Using this photometry we identify 185 massive evolved stellar candidates based on their location in color-magnitude and color-color diagrams. We estimate the background contamination to our stellar candidate lists and further classify candidates based on their appearance in HSTHST Wide Field Camera 3 (WFC3) observations of M83. We find 49 strong candidates for massive stars which are very promising objects for spectroscopic follow-up. Based on their location in a B−VB-V versus V−IV-I diagram, we expect at least 24, or roughly 50%, to be confirmed as red supergiants.Comment: 32 pages, 23 figures, accepted for publication in A&

    La superfamilia Helicoidea (Pulmonata, Stylommatophora) en la provincia de Huesca

    Get PDF

    A Speculative Parallel Algorithm for Self-Organizing Maps

    Get PDF

    HS 1857+5144 : a hot and young pre-cataclysmic variable

    Get PDF
    Aims. We report the discovery of a new white dwarf/M dwarf binary, HS 1857+5144, identified in the Hamburg Quasar Survey (HQS). Methods. Time-resolved optical spectroscopy and photometry were carried out to determine the properties of this new cataclysmic variable progenitor (pre-CV). Results. The light curves of HS 1857+5144 display a sinusoidal variation with a period of Porb = 383.52 min and peak-to-peak amplitudes of 0.7 mag and 1.1mag in the B-band and R-band, respectively. The large amplitude of the brightness variation results from a reflection effect on the heated inner hemisphere of the companion star, suggesting a very high temperature of the white dwarf. Our radial velocity study confirms the photometric period as the orbital period of the system. A model atmosphere fit to the spectrum of the white dwarf obtained at minimum light provides limits to its mass and temperature of Mwd 0.6−1.0 M and Twd 70 000−100 000 K, respectively. The detection of He II λ4686 absorption classifies the primary star of HS 1857+5144 as a DAO white dwarf. Combining the results from our spectroscopy and photometry, we estimate the mass of the companion star and the binary inclination to be Msec 0.15−0.30 M and i 45◦−55◦, respectively. Conclusions. We classify HS 1857+5144 as one of the youngest pre-CV known to date. The cooling age of the white dwarf suggests that the present system has just emerged from a common envelope phase ∼105 yr ago. HS 1857+5144 will start mass transfer within or below the 2–3 h period gap
    • …
    corecore