4,859 research outputs found

    LEIR electron cooler status

    Get PDF
    The electron cooler for LEIR is the first of a new generation of coolers being commissioned for fast phase space cooling of ion beams in storage rings. It is a stateof- the-art cooler incorporating all the recent developments in electron cooling technology (adiabatic expansion, electrostatic bend, variable density electron beam) and is designed to deliver up to 600 mA of electron current for the cooling and stacking of Pb54+ ions in the frame of the ions for LHC project. In this paper we present our experience with the commissioning of the new device as well as the first results of ion beam cooling with a high-intensity variable-density electron beam

    NGC 7331: the Galaxy with the Multicomponent Central Region

    Get PDF
    We present the results of the spectral investigation of the regular Sb galaxy NGC 7331 with the Multi-Pupil Field Spectrograph of the 6m telescope. The absorption-line indices H-beta, Mgb, and are mapped to analyse the properties of the stellar populations in the circumnuclear region of the galaxy. The central part of the disk inside ~3" (200 pc) -- or a separate circumnuclear stellar-gaseous disk as it is distinguished by decoupled fast rotation of the ionized gas -- is very metal-rich, rather young, ~ 2 billion years old, and its solar magnesium-to-iron ratio evidences for a very long duration of the last episode of star formation there. However the gas excitation mechanism now in this disk is shock-like. The star-like nucleus had probably experienced a secondary star formation burst too: its age is 5 billion years, much younger than the age of the circumnuclear bulge. But [Mg/Fe]=+0.3 and only solar global metallicity imply that the nuclear star formation burst has been much shorter than that in the circumnuclear disk. The surrounding bulge is rather old, 9--14 billion years old, and moderately metal-poor. The rotation of the stars and gas within the circumnuclear disk is axisymmetric though its rotation plane may be slightly inclined to the global plane of the galaxy. Outside the circumnuclear disk the gas may experience non-circular motions, and we argue that the low-contrast extended bulge of NGC 7331 is triaxial.Comment: LATEX, 27 pages, + 15 Postscript figures. Accepted to Astronomical Journal, July issu

    First Results from the LEIR Ionisation Profile Monitors

    Get PDF
    The role of the Low Energy Ion Ring, LEIR, is to transform long pulses of lead ions from the Linac 3 to short dense bunches for transfer to the LHC. This is accomplished by the accumulation of up to 4 Linac pulses by electron cooling. In order to non-destructively monitor the cooling performance and determine the accumulated beam characteristics, two prototype ionisation profile monitors have been built and were tested during the LEIR commissioning runs with O4+ and Pb54+ ions in 2006. In this paper we present the results obtained with the prototype monitors, the problems encountered and describe the modifications made for the final design. The modified monitors have been installed on the LEIR machine and are waiting for the next ion run planned in August

    Rashba Effect at Magnetic Metal Surfaces

    Get PDF
    We give experimental and theoretical evidence of the Rashba effect at the magnetic rare-earth metal surface Gd(0001). The Rashba effect is substantially enhanced and the Rashba parameter changes its sign when a metal-oxide surface layer is formed. The experimental observations are quantitatively described by ab initio calculations that give a detailed account of the near-surface charge density gradients causing the Rashba effect. Since the sign of the Rashba splitting depends on the magnetization direction, the findings open up new opportunities for the study of surface and interface magnetism.Comment: 4 Fig

    Antitumour Activity of a pt(III) Derivative of 2-Mercaptopyrimidine

    Get PDF
    The complex [Pt2Cl2(Spym)4], where Spym = 2-mercaptopyrimidine, was synthesized and analyzed spectroscopically. The presence in the 195Pt NMR spectrum, of only one signal for the Pt(III) indicates the symmetrical arrangement of the ligands and the identical setting of N, S and Cl atoms, PtS2ClN2, for the two Pt atoms being different to other compounds described in the literature. The interaction of this complex with DNA was studied by several techniques, including circular dichroism, melting temperature determination, electron microscopy (EM) and atomic force microscopy (TMAFM). Preliminary results show a high activity against HL-60 and HeLa tumour lines for the Pt-2-mercaptopyrimidine complex in comparison with cisplatin activity. Higher values for IC50 were obtained, while the values of LD50 were lower than those for cisplatin

    Measurement of the intrinsic damping constant in individual nanodisks of YIG and YIG{\textbar}Pt

    Get PDF
    We report on an experimental study on the spin-waves relaxation rate in two series of nanodisks of diameter ϕ=\phi=300, 500 and 700~nm, patterned out of two systems: a 20~nm thick yttrium iron garnet (YIG) film grown by pulsed laser deposition either bare or covered by 13~nm of Pt. Using a magnetic resonance force microscope, we measure precisely the ferromagnetic resonance linewidth of each individual YIG and YIG{\textbar}Pt nanodisks. We find that the linewidth in the nanostructure is sensibly smaller than the one measured in the extended film. Analysis of the frequency dependence of the spectral linewidth indicates that the improvement is principally due to the suppression of the inhomogeneous part of the broadening due to geometrical confinement, suggesting that only the homogeneous broadening contributes to the linewidth of the nanostructure. For the bare YIG nano-disks, the broadening is associated to a damping constant α=4104\alpha = 4 \cdot 10^{-4}. A 3 fold increase of the linewidth is observed for the series with Pt cap layer, attributed to the spin pumping effect. The measured enhancement allows to extract the spin mixing conductance found to be G=1.551014 Ω1m2G_{\uparrow \downarrow}= 1.55 \cdot 10^{14}~ \Omega^{-1}\text{m}^{-2} for our YIG(20nm){\textbar}Pt interface, thus opening large opportunities for the design of YIG based nanostructures with optimized magnetic losses.Comment: 4 pages, 3 figure

    The Abundance of SiC2 in Carbon Star Envelopes: Evidence that SiC2 is a gas-phase precursor of SiC dust

    Full text link
    Silicon carbide dust is ubiquitous in circumstellar envelopes around C-rich AGB stars. However, the main gas-phase precursors leading to the formation of SiC dust have not yet been identified. The most obvious candidates among the molecules containing an Si--C bond detected in C-rich AGB stars are SiC2, SiC, and Si2C. We aim to study how widespread and abundant SiC2, SiC, and Si2C are in envelopes around C-rich AGB stars and whether or not these species play an active role as gas-phase precursors of silicon carbide dust in the ejecta of carbon stars. We carried out sensitive observations with the IRAM 30m telescope of a sample of 25 C-rich AGB stars to search for emission lines of SiC2, SiC, and Si2C in the 2 mm band. We performed non-LTE excitation and radiative transfer calculations based on the LVG method to model the observed lines of SiC2 and to derive SiC2 fractional abundances in the observed envelopes. We detect SiC2 in most of the sources, SiC in about half of them, and do not detect Si2C in any source, at the exception of IRC +10216. Most of these detections are reported for the first time in this work. We find a positive correlation between the SiC and SiC2 line emission, which suggests that both species are chemically linked, the SiC radical probably being the photodissociation product of SiC2 in the external layer of the envelope. We find a clear trend in which the denser the envelope, the less abundant SiC2 is. The observed trend is interpreted as an evidence of efficient incorporation of SiC2 onto dust grains, a process which is favored at high densities owing to the higher rate at which collisions between particles take place. The observed behavior of a decline in the SiC2 abundance with increasing density strongly suggests that SiC2 is an important gas-phase precursor of SiC dust in envelopes around carbon stars.Comment: Published in A&A. 16 pages and 10 figure

    Through the magnifying glass: ALMA acute viewing of the intricate nebular architecture of OH231.8+4.2

    Full text link
    We present continuum and molecular line emission ALMA observations of OH 231.8+4.2, a well studied bipolar nebula around an asymptotic giant branch (AGB) star. The high angular resolution (~0.2-0.3 arcsec) and sensitivity of our ALMA maps provide the most detailed and accurate description of the overall nebular structure and kinematics of this object to date. We have identified a number of outflow components previously unknown. Species studied in this work include 12CO, 13CO, CS, SO, SO2, OCS, SiO, SiS, H3O+, Na37Cl, and CH3OH. The molecules Na37Cl and CH3OH are first detections in OH 231.8+4.2, with CH3OH being also a first detection in an AGB star. Our ALMA maps bring to light the totally unexpected position of the mass-losing AGB star (QX Pup) relative to the large-scale outflow. QX Pup is enshrouded within a compact (<60 AU) parcel of dust and gas (clump S) in expansion (V~5-7 km/s) that is displaced by 0.6arcsec to the south of the dense equatorial region (or waist) where the bipolar lobes join. Our SiO maps disclose a compact bipolar outflow that emerges from QX Pup's vicinity. This outflow is oriented similarly to the large-scale nebula but the expansion velocities are about ten times lower (~35 km/s). We deduce short kinematical ages for the SiO outflow, ranging from ~50-80 yr, in regions within ~150 AU, to ~400-500 yr at the lobe tips (~3500 AU). Adjacent to the SiO outflow, we identify a small-scale hourglass-shaped structure (mini-hourglass) that is probably made of compressed ambient material formed as the SiO outflow penetrates the dense, central regions of the nebula. The lobes and the equatorial waist of the mini-hourglass are both radially expanding with a constant velocity gradient. The mini-waist is characterized by extremely low velocities, down to ~1 km/s at ~150 AU, which tentatively suggest the presence of a stable structure. (abridged

    Test of a dispersion sweep correction system using a centroid in the DIRAC beam line

    Get PDF
    A new proton beam position detector named "centroid" is placed in the DIRAC target situation and is aligned with respect to the beam. Behind it there is a set of various targets used for the DIRAC experiment. The "centroid" itself collects the secondary electrons, which are emitted by the target when hit by the proton beam. This provides an on-line verification of the beam position without obstructing the beam path by a screen, and without perturbing the experiment. A computer application then calculates the corrections needed to centre the beam in both planes as a function of time. This report will explain how this is done
    corecore