9,506 research outputs found

    Modeling a Slicer Mirror Using Zemax User-Defined Surface

    Full text link
    A slicer mirror is a complex surface composed by many tilted and decentered mirrors sub-surfaces. The major difficulty to model such a complex surface is the large number of parameters used to define it. The Zemax's multi-configuration mode is usually used to specify each parameters (tilts, curvatures, decenters) for each mirror sub-surface which are then considered independently. Otherwise making use of the User-Defined Surface (UDS-DLL) Zemax capability, we are able to consider the set of sub-surfaces as a whole surface. In this paper, we present such a UDS-DLL tool comparing its performance with those of the classical multi-configuration mode. In particular, we explore the use of UDS-DLL to investigate the cross-talk due to the diffraction on the slicer array mirrors which has been a burden task when using multi-configuration mode.Comment: Submitted to the proceedings of the Durham Integral Field Spectroscopy Workshop July 4th-8th 200

    In-Situ Particle Acceleration in Extragalactic Radio Hot Spots: Observations Meet Expectations

    Full text link
    We discuss, in terms of particle acceleration, the results from optical VLT observations of hot spots associated with radio galaxies. On the basis of observational and theoretical grounds, it is shown that: 1. relatively low radio-radio power hot spots are the optimum candidates for being detected at optical waves. This is supported by an unprecedented optical detection rate of 70% out of a sample of low radio power hot spots. 2. the shape of the synchrotron spectrum of hot spots is mainly determined by the strength of the magnetic field in the region. In particular, the break frequency, related to the age of the oldest electrons in the hot spots, is found to increase with decreasing synchrotron power and magnetic field strength. Both observational results are in agreement with an in-situ particle acceleration scenario.Comment: 5 pages, TeX (or Latex, etc), 4 figures, to appear in MNRAS Letter, Updated reference

    Convective line shifts for the Gaia RVS from the CIFIST 3D model atmosphere grid

    Get PDF
    To derive space velocities of stars along the line of sight from wavelength shifts in stellar spectra requires accounting for a number of second-order effects. For most stars, gravitational redshifts, convective blueshifts, and transverse stellar motion are the dominant contributors. We provide theoretical corrections for the net velocity shifts due to convection expected for the measurements from the Gaia Radial Velocity Spectrometer (RVS). We used a set of three-dimensional time-dependent simulations of stellar surface convection computed with CO5BOLD to calculate spectra of late-type stars in the Gaia RVS range and to infer the net velocity offset that convective motions will induce in radial velocities derived by cross-correlation. The net velocity shifts derived by cross-correlation depend both on the wavelength range and spectral resolution of the observations. Convective shifts for Gaia RVS observations are less than 0.1 km/s for late-K-type stars, and they increase with stellar mass, reaching about 0.3 km/s or more for early F-type dwarfs. This tendency is the result of an increase with effective temperature in both temperature and velocity fluctuations in the line-forming region. Our simulations also indicate that the net RVS convective shifts can be positive (i.e. redshifts) in some cases. Overall, the blueshifts weaken slightly with increasing surface gravity, and are enhanced at low metallicity. Gravitational redshifts amount up to 0.7 km/s and dominate convective blueshifts for dwarfs, but become much weaker for giants.Comment: 13 pages, to appear in A&A; model fluxes available from ftp://leda.as.utexas.edu/pub/callende/Gaia3D and soon from CD

    Accounting for Convective Blue-Shifts in the Determination of Absolute Stellar Radial Velocities

    Full text link
    For late-type non-active stars, gravitational redshifts and convective blueshifts are the main source of biases in the determination of radial velocities. If ignored, these effects can introduce systematic errors of the order of ~ 0.5 km/s. We demonstrate that three-dimensional hydrodynamical simulations of solar surface convection can be used to predict the convective blue-shifts of weak spectral lines in solar-like stars to ~ 0.070 km/s. Using accurate trigonometric parallaxes and stellar evolution models, the gravitational redshifts can be constrained with a similar uncertainty, leading to absolute radial velocities accurate to better than ~ 0.1 km/s.Comment: To appear in the proceedings of the Joint Discussion 10, IAU General Assembly, Rio de Janeiro, August 10-11, 200
    • …
    corecore