We discuss, in terms of particle acceleration, the results from optical VLT
observations of hot spots associated with radio galaxies. On the basis of
observational and theoretical grounds, it is shown that:
1. relatively low radio-radio power hot spots are the optimum candidates for
being detected at optical waves. This is supported by an unprecedented optical
detection rate of 70% out of a sample of low radio power hot spots.
2. the shape of the synchrotron spectrum of hot spots is mainly determined by
the strength of the magnetic field in the region. In particular, the break
frequency, related to the age of the oldest electrons in the hot spots, is
found to increase with decreasing synchrotron power and magnetic field
strength.
Both observational results are in agreement with an in-situ particle
acceleration scenario.Comment: 5 pages, TeX (or Latex, etc), 4 figures, to appear in MNRAS Letter,
Updated reference