38 research outputs found

    Short-Term Seasonal Development of Anthropometry, Body Composition, Physical Fitness, and Sport-Specific Performance in Young Olympic Weightlifters

    Get PDF
    The aim of this study is to monitor short-term seasonal development of young Olympic weightlifters’ anthropometry, body composition, physical fitness, and sport-specific performance. Fifteen male weightlifters aged 13.2 1.3 years participated in this study. Tests for the assessment of anthropometry (e.g., body-height, body-mass), body-composition (e.g., lean-body-mass, relative fat-mass), muscle strength (grip-strength), jump performance (drop-jump (DJ) height, countermovement-jump (CMJ) height, DJ contact time, DJ reactive-strength-index (RSI)), dynamic balance (Y-balance-test), and sport-specific performance (i.e., snatch and clean-and-jerk) were conducted at different time-points (i.e., T1 (baseline), T2 (9 weeks), T3 (20 weeks)). Strength tests (i.e., grip strength, clean-and-jerk and snatch) and training volume were normalized to body mass. Results showed small-to-large increases in body-height, body-mass, lean-body-mass, and lower-limbs lean-mass from T1-to-T2 and T2-to-T3 (D0.7–6.7%; 0.1 d 1.2). For fat-mass, a significant small-sized decrease was found from T1-to-T2 (D13.1%; d = 0.4) and a significant increase from T2-to-T3 (D9.1%; d = 0.3). A significant main effect of time was observed for DJ contact time (d = 1.3) with a trend toward a significant decrease from T1-to-T2 (D–15.3%; d = 0.66; p = 0.06). For RSI, significant small increases from T1-to-T2 (D9.9%, d = 0.5) were noted. Additionally, a significant main effect of time was found for snatch (d = 2.7) and clean-and-jerk (d = 3.1) with significant small-to-moderate increases for both tests from T1-to-T2 and T2-to-T3 (D4.6–11.3%, d = 0.33 to 0.64). The other tests did not change significantly over time (0.1 d 0.8). Results showed significantly higher training volume for sport-specific training during the second period compared with the first period (d = 2.2). Five months of Olympic weightlifting contributed to significant changes in anthropometry, body-composition, and sport-specific performance. However, hardly any significant gains were observed for measures of physical fitness. Coaches are advised to design training programs that target a variety of fitness components to lay an appropriate foundation for later performance as an elite athlete

    Effects of Resistance Training on Change-of-Direction Speed in Youth and Young Physically Active and Athletic Adults: A Systematic Review with Meta-Analysis

    Get PDF
    BACKGROUND:Change-of-direction (CoD) speed is a physical fitness attribute in many field-based team and individual sports. To date, no systematic review with meta-analysis available has examined the effects of resistance training (RT) on CoD speed in youth and adults. OBJECTIVE:To aggregate the effects of RT on CoD speed in youth and young physically active and athletic adults, and to identify the key RT programme variables for training prescription. DATA SOURCES:A systematic literature search was conducted with PubMed, Web of Science, and Google Scholar, with no date restrictions, up to October 2019, to identify studies related to the effects of RT on CoD speed. STUDY ELIGIBILITY CRITERIA:Only controlled studies with baseline and follow-up measures were included if they examined the effects of RT (i.e., muscle actions against external resistances) on CoD speed in healthy youth (8-18 years) and young physically active/athletic male or female adults (19-28 years). STUDY APPRAISAL AND SYNTHESIS METHODS:A random-effects model was used to calculate weighted standardised mean differences (SMD) between intervention and control groups. In addition, an independent single training factor analysis (i.e., RT frequency, intensity, volume) was undertaken. Further, to verify if any RT variable moderated effects on CoD speed, a multivariate random-effects meta-regression was conducted. The methodological quality of the included studies was assessed using the physiotherapy evidence database (PEDro) scale. RESULTS:Fifteen studies, comprising 19 experimental groups, were included. The methodological quality of the studies was acceptable with a median PEDro score of 6. There was a significant large effect size of RT on CoD speed across all studies (SMD = - 0.82 [- 1.14 to - 0.49]). Subgroup analyses showed large effect sizes on CoD speed in males (SMD = - 0.95) contrasting with moderate improvements in females (SMD = - 0.60). There were large effect sizes on CoD speed in children (SMD = - 1.28) and adolescents (SMD = - 1.21) contrasting with moderate effects in adults (SMD = - 0.63). There was a moderate effect in elite athletes (SMD = - 0.69) contrasting with a large effect in subelite athletes (SMD = - 0.86). Differences between subgroups were not statistically significant. Similar improvements were observed regarding the effects of independently computed training variables. In terms of RT frequency, our results indicated that two sessions per week induced large effects on CoD speed (SMD = - 1.07) while programmes with three sessions resulted in moderate effects (SMD = - 0.53). For total training intervention duration, we observed large effects for ≤ 8 weeks (SMD = - 0.81) and > 8 weeks (SMD = - 0.85). For single session duration, we found large effects for ≤ 30 min and ≥ 45 min (both SMD = - 1.00). In terms of number of training sessions, we identified large effects for ≤ 16 sessions (SMD = - 0.83) and > 16 sessions (SMD = - 0.81). For training intensity, we found moderate effects for light-to-moderate (SMD = - 0.76) and vigorous-to-near maximal intensities (SMD = - 0.77). With regards to RT type, we observed large effects for free weights (SMD = - 0.99) and machine-based training (SMD = - 0.80). For combined free weights and machine-based training, moderate effects were identified (SMD = - 0.77). The meta-regression outcomes showed that none of the included training variables significantly predicted the effects of RT on CoD speed (R2 = 0.00). CONCLUSIONS:RT seems to be an effective means to improve CoD speed in youth and young physically active and athletic adults. Our findings indicate that the impact of RT on CoD speed may be more prominent in males than in females and in youth than in adults. Additionally, independently computed single factor analyses for different training variables showed that higher compared with lower RT intensities, frequencies, and volumes appear not to have an advantage on the magnitude of CoD speed improvements. In terms of RT type, similar improvements were observed following machine-based and free weights training

    Effects of Physical Exercise Training in the Workplace on Physical Fitness:A Systematic Review and Meta-analysis

    Get PDF
    Background There is evidence that physical exercise training (PET) conducted at the workplace is effective in improving physical fitness and thus health. However, there is no current systematic review available that provides high-level evidence regarding the effects of PET on physical fitness in the workforce. Objectives To quantify sex-, age-, and occupation type-specific effects of PET on physical fitness and to characterize dose-response relationships of PET modalities that could maximize gains in physical fitness in the working population. Data Sources A computerized systematic literature search was conducted in the databases PubMed and Cochrane Library (2000-2019) to identify articles related to PET in workers. Study Eligibility Criteria Only randomized controlled trials with a passive control group were included if they investigated the effects of PET programs in workers and tested at least one fitness measure. Study Appraisal and Synthesis Methods Weighted mean standardised mean differences (SMDwm) were calculated using random effects models. A multivariate random effects meta-regression was computed to explain the influence of key training modalities (e.g., training frequency, session duration, intensity) on the effectiveness of PET on measures of physical fitness. Further, subgroup univariate analyses were computed for each training modality. Additionally, methodological quality of the included studies was rated with the help of the Physiotherapy Evidence Database (PEDro) Scale. Results Overall, 3423 workers aged 30-56 years participated in 17 studies (19 articles) that were eligible for inclusion. Methodological quality of the included studies was moderate with a median PEDro score of 6. Our analyses revealed significant, small-sized effects of PET on cardiorespiratory fitness (CRF), muscular endurance, and muscle power (0.2

    The role of trunk training for physical fitness and sport-specific performance. Protocol for a Meta-Analysis.

    Get PDF
    The trunk (core) muscles are involved in daily functions (i. e., stabilizing the body in everyday tasks) and force generation of the limbs during athletic tasks such as kicking, throwing, or running. Even though trunk training is a popular means for improving physical fitness and athletic performance, the direct relationship of improved trunk function (i.e., stability, strength, or endurance), fitness and sport-specific performance is not conclusive. The aim of this proposed review is to evaluate the effects of trunk training on physical fitness and sport-specific performance, and to examine potential subject-related (e.g., age, sex) and trunk training-related moderator variables (e.g., training period, training frequency) for performance changes. We will conduct a systematic literature search in Web of Science, MEDLINE (via EBSCO) and SportDiscus. Relevant papers will be screened independently by two reviewers in two stages: (1) title and abstracts and (2) the full text of the remaining papers. A third reviewer will resolve possible disagreements. Data extraction and risk of bias of the included studies will be performed in addition to the PEDro scoring to judge the quality of the studies. A meta-analysis will be conducted to determine the efficacy of trunk training to increase physical fitness and sport-specific performance measures. In addition, subgroup univariate analyses were computed for subject-related (i.e., age, sex, performance level) and training-related moderator variables (i.e., training period, training frequency, training sessions, session duration). The results of this proposed systematic review and meta-analysis will assess the effects of trunk training on physical fitness and sport-specific and identify which subject-related and training-related moderate variables of trunk training modality might be beneficial for performance gains. This knowledge has potential importance for athletes and coaches in sports.publishedVersio

    The Increased Effectiveness of Loaded Versus Unloaded Plyometric Jump Training in Improving Muscle Power, Speed, Change of Direction, and Kicking-Distance Performance in Prepubertal Male Soccer Players

    Get PDF
    Purpose: To examine the effects of loaded (LPJT) versus unloaded plyometric jump training (UPJT) programs on measures of muscle power, speed, change of direction (CoD), and kicking-distance performance in prepubertal male soccer players. Methods: Participants (N = 29) were randomly assigned to a LPJT group (n = 13; age = 13.0 [0.7] y) using weighted vests or UPJT group (n = 16; age = 13.0 [0.5] y) using body mass only. Before and after the intervention, tests for the assessment of proxies of muscle power (ie, countermovement jump, standing long jump); speed (ie, 5-, 10-, and 20-m sprint); CoD (ie, Illinois CoD test, modified 505 agility test); and kicking-distance were conducted. Data were analyzed using magnitude-based inferences. Results: Within-group analyses for the LPJT group showed large and very large improvements for 10-m sprint time (effect size [ES] = 2.00) and modified 505 CoD (ES = 2.83) tests, respectively. For the same group, moderate improvements were observed for the Illinois CoD test (ES = 0.61), 5- and 20-m sprint time test (ES = 1.00 for both the tests), countermovement jump test (ES = 1.00), and the maximal kicking-distance test (ES = 0.90). Small enhancements in the standing long jump test (ES = 0.50) were apparent. Regarding the UPJT group, small improvements were observed for all tests (ES = 0.33–0.57), except 5- and 10-m sprint time (ES = 1.00 and 0.63, respectively). Between-group analyses favored the LPJT group for the modified 505 CoD (ES = 0.61), standing long jump (ES = 0.50), and maximal kicking-distance tests (ES = 0.57), but not for the 5-m sprint time test (ES = 1.00). Only trivial between-group differences were shown for the remaining tests (ES = 0.00–0.09). Conclusion: Overall, LPJT appears to be more effective than UPJT in improving measures of muscle power, speed, CoD, and kicking-distance performance in prepubertal male soccer players

    Strength Training Intensity and Volume Affect Performance of Young Kayakers/Canoeists

    Get PDF
    PurposeThe aim of this study was to compare the effects of moderate intensity, low volume (MILV) vs. low intensity, high volume (LIHV) strength training on sport-specific performance, measures of muscular fitness, and skeletal muscle mass in young kayakers and canoeists.MethodsSemi-elite young kayakers and canoeists (N = 40, 13 ± 0.8 years, 11 girls) performed either MILV (70–80% 1-RM, 6–12 repetitions per set) or LIHV (30–40% 1-RM, 60–120 repetitions per set) strength training for one season. Linear mixed-effects models were used to compare effects of training condition on changes over time in 250 and 2,000 m time trials, handgrip strength, underhand shot throw, average bench pull power over 2 min, and skeletal muscle mass. Both between- and within-subject designs were used for analysis. An alpha of 0.05 was used to determine statistical significance.ResultsBetween- and within-subject analyses showed that monthly changes were greater in LIHV vs. MILV for the 2,000 m time trial (between: 9.16 s, SE = 2.70, p < 0.01; within: 2,000 m: 13.90 s, SE = 5.02, p = 0.01) and bench pull average power (between: 0.021 W⋅kg–1, SE = 0.008, p = 0.02; within: 0.010 W⋅kg–1, SE = 0.009, p > 0.05). Training conditions did not affect other outcomes.ConclusionYoung sprint kayakers and canoeists benefit from LIHV more than MILV strength training in terms of 2,000 m performance and muscular endurance (i.e., 2 min bench pull power)

    Effect of flywheel versus traditional resistance training on change of direction performance in male athletes: A systematic review with meta-analysis

    Get PDF
    Objective: This study aimed to systematically review and meta-analyze the effect of flywheel resistance training (FRT) versus traditional resistance training (TRT) on change of direction (CoD) performance in male athletes. Methods: Five databases were screened up to December 2021. Results: Seven studies were included. The results indicated a significantly larger effect of FRT compared with TRT (standardized mean difference [SMD] = 0.64). A within-group comparison indicated a significant large effect of FRT on CoD performance (SMD = 1.63). For TRT, a significant moderate effect was observed (SMD = 0.62). FRT of ≤2 sessions/week resulted in a significant large effect (SMD = 1.33), whereas no significant effect was noted for >2 sessions/week. Additionally, a significant large effect of ≤12 FRT sessions (SMD = 1.83) was observed, with no effect of >12 sessions. Regarding TRT, no significant effects of any of the training factors were detected (p > 0.05). Conclusions: FRT appears to be more effective than TRT in improving CoD performance in male athletes. Independently computed single training factor analyses for FRT indicated that ≤2 sessions/week resulted in a larger effect on CoD performance than >2 sessions/week. Additionally, a total of ≤12 FRT sessions induced a larger effect than >12 training sessions. Practitioners in sports, in which accelerative and decelerative actions occur in quick succession to change direction, should regularly implement FRT

    Home-based exercise programmes improve physical fitness of healthy older adults: A PRISMA-compliant systematic review and meta-analysis with relevance for COVID-19

    Get PDF
    This systematic review and meta-analysis aimed to examine the effects of home-based exercise programmes on measures of physical-fitness in healthy older adults. Seventeen randomized-controlled trials were included with a total of 1,477 participants. Results indicated small effects of home-based training on muscle strength (between-study standardised-mean-difference [SMD]=0.30), muscle power (SMD=0.43),muscular endurance (SMD=0.28), and balance (SMD=0.28). We found no statistically significant effects for single-mode strength vs. multimodal training (e.g., combined balance, strength, and flexibility exercises) on measures of muscle strength and balance. Single-mode strength training had moderate effects on muscle strength (SMD=0.51) and balance (SMD=0.65) while multimodal training had no statistically significant effects on muscle strength and balance. Irrespective of the training type, >3 weekly sessions produced larger effects on muscle strength (SMD=0.45) and balance(SMD=0.37) compared with ≤3 weekly sessions (muscle strength: SMD=0.28; balance:SMD=0.24). For session-duration, only ≤30min per-session produced small effects on muscle strength (SMD=0.35) and balance (SMD=0.34). No statistically significant differences were observed between all independently-computed single-training factors. Home-based exercise appears effective to improve components of health- (i.e., muscle strength and muscular endurance) and skill-related (i.e., muscle power, balance) physical-fitness. Therefore, in times of restricted physical activity due to pandemics, home-based exercises constitute an alternative to counteract physical inactivity and preserve/improve the health and fitness of healthy older adults aged 65-to-83 years
    corecore