13 research outputs found

    Modification of streaming potential by precipitation of calcite in a sand-water system: laboratory measurements pH range from 4 to 12

    Get PDF
    Spontaneous Potentials associated with volcanic activity are often interpreted by means of the electrokinetic potential, which is usually positive in the flow direction (i.e. Zeta potential of the rock is negative). The water-rock interactions in hydrothermal zones alter the primary minerals leading to the formation of secondary minerals. This work addresses the study of calcite precipitation in a sand composed of 98% quartz and 2% calcite using streaming potential measurements. The precipitation of calcite as a secondary mineral phase, inferred by high calcite saturation indices and by a fall in permeability, has a significant effect on the electrokinetic behaviour, leading to a significant reduction in the Zeta potential (in absolute value) and even a change in sign. The measured decrease in Zeta potential from -16 mV to -27±4 mV takes place as the pH rises from 4 to 7, while it remains constant at -25±1 mV as the pH increases from 8 to 10.5. For pH higher than 10.5, calcite precipitates and is expected to coat the quartz surface. The measured Zeta potential vary from -17 to +8 mV for pH ranging from 10.6 to 11.7 depending on the amount of precipitated calcite indicated by the decrease in permeability. The observed change in sign of the electrical surface potential rules out the usual qualitative interpretation of SP anomalies in order to determine fluid circulations, even at pH lower than 9 if calcite is widely present as a secondary mineral phase, since the electrical surface potential of calcite depends also on CO2 partial pressure and [Ca2+]. Therefore SP anomalies as measured in hydrothermal field, without mineralogical analyses of hydrothermal deposits, and without geochemical fluid survey, should be interpreted with caution.Comment: The definitive version is available at www.blackwell-synergy.com; We acknowledge the Geophysical Journal International, the Royal Astronomical Society and Blackwell Publishing. Full bibliographic reference is : Guichet, X., L. Jouniaux, and N. Catel, Modification of streaming potential by precipitation of calcite in a sand-water system: laboratory measurements in the pH range from 4 to 12, Geophysical Journal International, 166, 445-460, doi:10.1111/j.1365-246X.2006.02922.x, 200

    Isolation of a Peptide That Binds to Pseudomonas aeruginosa Lytic Bacteriophage

    No full text
    Antimicrobial resistance is a global health threat that is exacerbated by the overuse and misuse of antibiotics in medicine and agriculture. As an alternative to conventional antimicrobial drugs, phage therapy involves the treatment of infected patients with a bacteriophage that naturally destroys bacterial pathogens. With the re-emergence of phage therapy, novel tools are needed to study phages. In this work we set out to screen and isolate peptide candidates that bind to phages and act as affinity tags. Such peptides functionalized with an imaging agent could serves as versatile tools for tracking and imaging of phages. Specifically, we screened a phage display library for peptides that bind to the Good Vibes phage (GV), which lyses the bacterial pathogen Pseudomonas aeruginosa. Isolated monoclonal library phages featured a highly conserved consensus motif, LPPIXRX. The corresponding peptide WDLPPIGRLSGN was synthesized with a GGGSK linker and conjugated to cyanine 5 or biotin. The specific binding of the LPPIXRX motif to GV in vitro was confirmed using an enzyme-linked immunosorbent assay. We demonstrated imaging and tracking of GV in bacterial populations using the fluorescent targeting peptide and flow cytometry. In conclusion, we developed fluorescent labeled peptides that can bind to bacteriophage GV specifically, which may enable real-time analysis of phage in vivo and monitor the efficacy of phage therapy

    Germline Chd8 haploinsufficiency alters brain development in mouse

    No full text
    The chromatin remodeling gene CHD8 represents a central node in neurodevelopmental gene networks implicated in autism. We examined the impact of germline heterozygous frameshift Chd8 mutation on neurodevelopment in mice. Chd8+/del5 mice displayed normal social interactions with no repetitive behaviors but exhibited cognitive impairment correlated with increased regional brain volume, validating that phenotypes of Chd8+/del5 mice overlap pathology reported in humans with CHD8 mutations. We applied network analysis to characterize neurodevelopmental gene expression, revealing widespread transcriptional changes in Chd8+/del5 mice across pathways disrupted in neurodevelopmental disorders, including neurogenesis, synaptic processes and neuroimmune signaling. We identified a co-expression module with peak expression in early brain development featuring dysregulation of RNA processing, chromatin remodeling and cell-cycle genes enriched for promoter binding by Chd8, and we validated increased neuronal proliferation and developmental splicing perturbation in Chd8+/del5 mice. This integrative analysis offers an initial picture of the consequences of Chd8 haploinsufficiency for brain development

    Genome Sequences of Three Agrobacterium Biovars Help Elucidate the Evolution of Multichromosome Genomes in Bacteria▿ †

    No full text
    The family Rhizobiaceae contains plant-associated bacteria with critical roles in ecology and agriculture. Within this family, many Rhizobium and Sinorhizobium strains are nitrogen-fixing plant mutualists, while many strains designated as Agrobacterium are plant pathogens. These contrasting lifestyles are primarily dependent on the transmissible plasmids each strain harbors. Members of the Rhizobiaceae also have diverse genome architectures that include single chromosomes, multiple chromosomes, and plasmids of various sizes. Agrobacterium strains have been divided into three biovars, based on physiological and biochemical properties. The genome of a biovar I strain, A. tumefaciens C58, has been previously sequenced. In this study, the genomes of the biovar II strain A. radiobacter K84, a commercially available biological control strain that inhibits certain pathogenic agrobacteria, and the biovar III strain A. vitis S4, a narrow-host-range strain that infects grapes and invokes a hypersensitive response on nonhost plants, were fully sequenced and annotated. Comparison with other sequenced members of the Alphaproteobacteria provides new data on the evolution of multipartite bacterial genomes. Primary chromosomes show extensive conservation of both gene content and order. In contrast, secondary chromosomes share smaller percentages of genes, and conserved gene order is restricted to short blocks. We propose that secondary chromosomes originated from an ancestral plasmid to which genes have been transferred from a progenitor primary chromosome. Similar patterns are observed in select Beta- and Gammaproteobacteria species. Together, these results define the evolution of chromosome architecture and gene content among the Rhizobiaceae and support a generalized mechanism for second-chromosome formation among bacteria
    corecore