12 research outputs found

    Functional assessment of new MYBPC3 variants associated with Hypertrophic Cardiomyopathy

    Get PDF
    Hypertrophic cardiomyopathy (HCM) is the most common genetic disease of the myocardium. In ~60% of the cases HCM is caused by mutations in sarcomeric proteins, such as cardiac Myosin Binding Protein C (cMyBPC), which are responsible for generating the molecular force of myocyte contraction. A cohort of HCM patients have been screened for mutations in sarcomeric genes, and some new variants of cMyBPC of uncertain significance (VUS) were found. These new variants include two intronic variants (MYBPC3-c.506-2 A>C and MYBPC3-c.2308+3 G>C) and one missense variant (cMyBPC I603M), which were selected for functional study to determine pathogenicity. The MYBPC3-c.506-2 A>C mutation was analysed in mRNA extracted from peripheral blood of the patient. The analysis revealed the loss of the canonical splice site and the utilization of an alternative splicing site, causing the loss of the first 7 nucleotides of exon 5. For the other variant, minigene constructs were generated to transfect HEK-293 cells. The minigene assay showed that mutation MYBPC3-c.2308+3 G>C also produces altered pre-mRNA processing, resulting in the skipping of the exon 23. The mutation I603M localizes to domain C4 of cMyBPC. Using bioinformatics sequence analyses, a deleterious effect for I603M was predicted, but mRNA studies do not show any alteration of the splicing mechanism. At the protein level, homology modelling of domain C4 shows I603 to be buried in the protein structure, suggesting a potential destabilizing role of the I603M mutant. Indeed, circular dichroism spectroscopy and differential scanning calorimetry show a ~15oC lower melting temperature for the mutant C4 domain. Finally, results obtained by single-molecule atomic force microscopy do not show a mechanical fingerprint for C4 indicating a very low mechanical stability of this domain. Taken our results together, we propose that mutations c.506-2 A>C, c.2308+3 G>C and I603M lead to haploinsufficiency and cMyBPC protein destabilization, respectively causing the development of HCM. In conclusion, the study of the functional consequences of mutations leads to assignment of pathogenicity of variants of uncertain significance

    Protein Thermodynamic Destabilization in the Assessment of Pathogenicity of a Variant of Uncertain Significance in Cardiac Myosin Binding Protein C.

    Get PDF
    In the era of next generation sequencing (NGS), genetic testing for inherited disorders identifies an ever-increasing number of variants whose pathogenicity remains unclear. These variants of uncertain significance (VUS) limit the reach of genetic testing in clinical practice. The VUS for hypertrophic cardiomyopathy (HCM), the most common familial heart disease, constitute over 60% of entries for missense variants shown in ClinVar database. We have studied a novel VUS (c.1809T>G-p.I603M) in the most frequently mutated gene in HCM, MYBPC3, which codes for cardiac myosin-binding protein C (cMyBPC). Our determinations of pathogenicity integrate bioinformatics evaluation and functional studies of RNA splicing and protein thermodynamic stability. In silico prediction and mRNA analysis indicated no alteration of RNA splicing induced by the variant. At the protein level, the p.I603M mutation maps to the C4 domain of cMyBPC. Although the mutation does not perturb much the overall structure of the C4 domain, the stability of C4 I603M is severely compromised as detected by circular dichroism and differential scanning calorimetry experiments. Taking into account the highly destabilizing effect of the mutation in the structure of C4, we propose reclassification of variant p.I603M as likely pathogenic. Looking into the future, the workflow described here can be used to refine the assignment of pathogenicity of variants of uncertain significance in MYBPC3.J.A.C. was funded by the Ministerio de Ciencia, Innovación y Universidades (MCNU) through grants BIO2017-83640-P (AEI/FEDER, UE) and RYC-2014-16604, the European Research Area Network on Cardiovascular Diseases (ERA-CVD/ISCIII, MINOTAUR, AC16/00045), the Comunidad de Madrid (P2018/NMT-4443) and the CNIC-Severo Ochoa intramural grant program (03-2016 IGP). The CNIC is supported by the Instituto de Salud Carlos III (ISCIII), MCNU and the Pro CNIC Foundation, and is a Severo Ochoa Center of Excellence (SEV-2015-0505). G.F. was funded by the Ministero dell’Istruzione, dell’Università e della Ricerca-Rome PS35-126/IND.S

    Nanomechanical Phenotypes in Cardiac Myosin-Binding Protein C Mutants That Cause Hypertrophic Cardiomyopathy.

    Get PDF
    Hypertrophic cardiomyopathy (HCM) is a disease of the myocardium caused by mutations in sarcomeric proteins with mechanical roles, such as the molecular motor myosin. Around half of the HCM-causing genetic variants target contraction modulator cardiac myosin-binding protein C (cMyBP-C), although the underlying pathogenic mechanisms remain unclear since many of these mutations cause no alterations in protein structure and stability. As an alternative pathomechanism, here we have examined whether pathogenic mutations perturb the nanomechanics of cMyBP-C, which would compromise its modulatory mechanical tethers across sliding actomyosin filaments. Using single-molecule atomic force spectroscopy, we have quantified mechanical folding and unfolding transitions in cMyBP-C domains targeted by HCM mutations that do not induce RNA splicing alterations or protein thermodynamic destabilization. Our results show that domains containing mutation R495W are mechanically weaker than wild-type at forces below 40 pN and that R502Q mutant domains fold faster than wild-type. None of these alterations are found in control, nonpathogenic variants, suggesting that nanomechanical phenotypes induced by pathogenic cMyBP-C mutations contribute to HCM development. We propose that mutation-induced nanomechanical alterations may be common in mechanical proteins involved in human pathologies.J.A.C. acknowledges funding from the Ministerio de Ciencia e Innovación (MCIN) through grants BIO2014– 54768-P, BIO2017–83640-P (AEI/FEDER, UE), EIN2019–102966, RYC-2014–16604, and BFU2017–90692­ REDT, the European Research Area Network on Cardiovascular Diseases (ERA-CVD/ISCIII, MINOTAUR, AC16/00045), and the Comunidad de Madrid (consortium Tec4Bio-CM, S2018/NMT-4443, FEDER). This work was supported by NIH grants RM1 GM33289 and HL117138 to J.A.S.; a Stanford Dean’s Postdoctoral Fellowship to D.P. and N.N.; and a Stanford Maternal and Child Health Research Institute (MCHRI) Postdoctoral Fellowship (1220552–140-DHPEU) to N.N. Financial support to D.D.S. comes from Eusko Jaurlaritza (Basque Government) through the project IT1254–19, and grants RYC-2016–19590 and PGC2018–099321-B-I00 from the MCIN (FEDER). The CNIC is supported by the Instituto de Salud Carlos III (ISCIII), MCIN, and the Pro CNIC Foundation and was a Severo Ochoa Center of Excellence (SEV-2015–0505). We acknowledge funding from ISCIII to the Centro de Investigación Biomédica en Red (CIBERCV), CB16/11/00425. C.S.C. is the recipient of an FPI-SO predoctoral fellowship, BES-2016–076638. M.R.P. was the recipient of a Ph.D. fellowship from the Italian Ministry of Education, Universities and Research (MIUR). C.P.L. was a recipient of a CNIC Master Fellowship. We thank N. Vicente for excellent technical support (through grant PEJ16/MED/TL-1593 from Consejería de Educación, Juventud y Deporte de la Comunidad de Madrid and the European Social Fund). We thank the Spectroscopy and Nuclear Magnetic Resonance Core Unit at CNIO for access to CD instrumentation and discussion about protein binding assays. We thank A. Thompson and S. Day for their insights. We thank all members of the Molecular Mechanics of the Cardiovascular System team for helpful discussions and the contribution of five anonymous reviewers.S

    Basal oxidation of conserved cysteines modulates cardiac titin stiffness and dynamics

    Get PDF
    Titin, as the main protein responsible for the passive stiffness of the sarcomere, plays a key role in diastolic function and is a determinant factor in the etiology of heart disease. Titin stiffness depends on unfolding and folding transitions of immunoglobulin-like (Ig) domains of the I-band, and recent studies have shown that oxidative modifications of cryptic cysteines belonging to these Ig domains modulate their mechanical properties in vitro. However, the relevance of this mode of titin mechanical modulation in vivo remains largely unknown. Here, we describe the high evolutionary conservation of titin mechanical cysteines and show that they are remarkably oxidized in murine cardiac tissue. Mass spectrometry analyses indicate a similar landscape of basal oxidation in murine and human myocardium. Monte Carlo simulations illustrate how disulfides and S-thiolations on these cysteines increase the dynamics of the protein at physiological forces, while enabling load- and isoform-dependent regulation of titin stiffness. Our results demonstrate the role of conserved cysteines in the modulation of titin mechanical properties in vivo and point to potential redox-based pathomechanisms in heart disease.This work was supported by the Ministerio de Ciencia e Innovación grants BIO2014-54768-P, BIO2017-83640-P, RYC-2014-16604 to JAC and PGC2018-097019-B-I00 to JV, the Regional Government of Madrid grants S2018/NMT-4443 and PEJ16/MED/TL-1593 to JAC and the Instituto de Salud Carlos III (Fondo de Investigación Sanitaria grant PRB3 (PT17/0019/0003- ISCIII-SGEFI /ERDF, ProteoRed), and “la Caixa” Banking Foundation (project code HR17-00247) to JV. We acknowledge funding from the European Research Area Network on Cardiovascular Disease through grant MINOTAUR to SS (The Austrian Science Fund – FWF, I3301) and JAC (ISCIII-AC16/00045). The CNIC is supported by ISCIII, the Ministerio de Ciencia e Innovación and the Pro CNIC Foundation, and was a Severo Ochoa Center of Excellence (SEV-2015-0505). IMM was the recipient of a CNIC-ACCIONA Masters Fellowship and holds a fellowship from “La Caixa” Foundation (ID 100010434, fellowship code LCF/BQ/DR20/11790009). CSC is the recipient of an FPI-SO predoctoral fellowship BES-2016-076638. We thank Wolfgang A. Linke and Pablo García-Pavía for critical feedback. We are also thankful for the insights of three anonymous reviewers.S

    The Bacterial Mucosal Immunotherapy MV130 Protects Against SARS-CoV-2 Infection and Improves COVID-19 Vaccines Immunogenicity

    Get PDF
    COVID-19-specific vaccines are efficient prophylactic weapons against SARS-CoV-2 virus. However, boosting innate responses may represent an innovative way to immediately fight future emerging viral infections or boost vaccines. MV130 is a mucosal immunotherapy, based on a mixture of whole heat-inactivated bacteria, that has shown clinical efficacy against recurrent viral respiratory infections. Herein, we show that the prophylactic intranasal administration of this immunotherapy confers heterologous protection against SARS-CoV-2 infection in susceptible K18-hACE2 mice. Furthermore, in C57BL/6 mice, prophylactic administration of MV130 improves the immunogenicity of two different COVID-19 vaccine formulations targeting the SARS-CoV-2 spike (S) protein, inoculated either intramuscularly or intranasally. Independently of the vaccine candidate and vaccination route used, intranasal prophylaxis with MV130 boosted S-specific responses, including CD8+-T cell activation and the production of S-specific mucosal IgA antibodies. Therefore, the bacterial mucosal immunotherapy MV130 protects against SARS-CoV-2 infection and improves COVID-19 vaccines immunogenicity.CF was supported by AECC Foundation (INVES192DELF) and is currently funded by the Miguel Servet program (ID: CP20/00106) (ISCIII). IH-M receives the support of a fellowship from la Caixa Foundation (ID 100010434, fellowship code: LCF/BQ/IN17/11620074) and from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement no. 713673. AJ-C is a postgraduate fellow of the City Council of Madrid at the Residencia de Estudiantes (2020–2021). GD is supported by an European Molecular Biology Organization (EMBO) Long-term fellowship (ALTF 379-2019). This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. Project number 892965. OL and JA-C acknowledge Comunidad de Madrid (Tec4Bio-CM, S2018/NMT-4443, FEDER). Work in OL laboratory was funded by CNIO with the support of the projects Y2018/BIO4747 and P2018/NMT4443 from Comunidad de Madrid and co-funded by the European Social Fund and the European Regional Development Fund. The CNIO is supported by the Instituto de Salud Carlos III (ISCIII). Work at CNB and CISA is funded by the Spanish Health Ministry, Instituto de Salud Carlos III (ISCIII), Fondo COVID-19 grant COV20/00151, and Fondo Supera COVID-19 (Crue Universidades-Banco Santander) (to JG-A). Work in the DS laboratory is funded by the CNIC; by the European Research Council (ERC-2016-Consolidator Grant 725091); by Agencia Estatal de Investigación (PID2019-108157RB); by Comunidad de Madrid (B2017/BMD-3733 Immunothercan-CM); by Fondo Solidario Juntos (Banco Santander); by a research agreement with Inmunotek S.L.; and by Fundació La Marató de TV3 (201723). The CNIC is supported by the Instituto de Salud Carlos III (ISCIII), the MICINN, and the Pro CNIC Foundation.Peer reviewe

    Functional Studies and In Silico Analyses to Evaluate Non-Coding Variants in Inherited Cardiomyopathies

    Get PDF
    Point mutations are the most common cause of inherited diseases. Bioinformatics tools can help to predict the pathogenicity of mutations found during genetic screening, but they may work less well in determining the effect of point mutations in non-coding regions. In silico analysis of intronic variants can reveal their impact on the splicing process, but the consequence of a given substitution is generally not predictable. The aim of this study was to functionally test five intronic variants (MYBPC3-c.506-2A>C, MYBPC3-c.906-7G>T, MYBPC3-c.2308+3G>C, SCN5A-c.393-5C>A, and ACTC1-c.617-7T>C) found in five patients affected by inherited cardiomyopathies in the attempt to verify their pathogenic role. Analysis of the MYBPC3-c.506-2A>C mutation in mRNA from the peripheral blood of one of the patients affected by hypertrophic cardiac myopathy revealed the loss of the canonical splice site and the use of an alternative splicing site, which caused the loss of the first seven nucleotides of exon 5 (MYBPC3-G169AfsX14). In the other four patients, we generated minigene constructs and transfected them in HEK-293 cells. This minigene approach showed that MYBPC3-c.2308+3G>C and SCN5A-c.393-5C>A altered pre-mRNA processing, thus resulting in the skipping of one exon. No alterations were found in either MYBPC3-c.906-7G>T or ACTC1-c.617-7T>C. In conclusion, functional in vitro analysis of the effects of potential splicing mutations can confirm or otherwise the putative pathogenicity of non-coding mutations, and thus help to guide the patient's clinical management and improve genetic counseling in affected families

    Contribution of Genetic Test to Early Diagnosis of Methylenetetrahydrofolate Reductase (MTHFR) Deficiency: The Experience of a Reference Center in Southern Italy.

    Get PDF
    BACKGROUND the deficiency of 5,10-Methylenetetrahydrofolate reductase (MTHFR) constitutes a rare and severe metabolic disease and is included in most expanded newborn screening (NBS) programs worldwide. Patients with severe MTHFR deficiency develop neurological disorders and premature vascular disease. Timely diagnosis through NBS allows early treatment, resulting in improved outcomes. METHODS we report the diagnostic yield of genetic testing for MTHFR deficiency diagnosis, in a reference Centre of Southern Italy between 2017 and 2022. MTHFR deficiency was suspected in four newborns showing hypomethioninemia and hyperhomocysteinemia; otherwise, one patient born in pre-screening era showed clinical symptoms and laboratory signs that prompted to perform genetic testing for MTHFR deficiency. RESULTS molecular analysis of the MTHFR gene revealed a genotype compatible with MTHFR deficiency in two NBS-positive newborns and in the symptomatic patient. This allowed for promptly beginning the adequate metabolic therapy. CONCLUSIONS our results strongly support the need for genetic testing to quickly support the definitive diagnosis of MTHFR deficiency and start therapy. Furthermore, our study extends knowledge of the molecular epidemiology of MTHFR deficiency by identifying a novel mutation in the MTHFR gene.This research received no external funding.S

    Nanomechanical Phenotypes in Cardiac Myosin-Binding Protein C Mutants That Cause Hypertrophic Cardiomyopathy

    No full text
    Hypertrophic cardiomyopathy (HCM) is a disease of the myocardium caused by mutations in sarcomeric proteins with mechanical roles, such as the molecular motor myosin. Around half of the HCM-causing genetic variants target contraction modulator cardiac myosin-binding protein C (cMyBP-C), although the underlying pathogenic mechanisms remain unclear since many of these mutations cause no alterations in protein structure and stability. As an alternative pathomechanism, here we have examined whether pathogenic mutations perturb the nanomechanics of cMyBP-C, which would compromise its modulatory mechanical tethers across sliding actomyosin filaments. Using single-molecule atomic force spectroscopy, we have quantified mechanical folding and unfolding transitions in cMyBP-C domains targeted by HCM mutations that do not induce RNA splicing alterations or protein thermodynamic destabilization. Our results show that domains containing mutation R495W are mechanically weaker than wild-type at forces below 40 pN and that R502Q mutant domains fold faster than wild-type. None of these alterations are found in control, nonpathogenic variants, suggesting that nanomechanical phenotypes induced by pathogenic cMyBP-C mutations contribute to HCM development. We propose that mutation-induced nanomechanical alterations may be common in mechanical proteins involved in human pathologies
    corecore