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Abstract: Background: the deficiency of 5,10-Methylenetetrahydrofolate reductase (MTHFR) con-
stitutes a rare and severe metabolic disease and is included in most expanded newborn screening
(NBS) programs worldwide. Patients with severe MTHFR deficiency develop neurological disorders
and premature vascular disease. Timely diagnosis through NBS allows early treatment, resulting in
improved outcomes. Methods: we report the diagnostic yield of genetic testing for MTHFR deficiency
diagnosis, in a reference Centre of Southern Italy between 2017 and 2022. MTHFR deficiency was
suspected in four newborns showing hypomethioninemia and hyperhomocysteinemia; otherwise,
one patient born in pre-screening era showed clinical symptoms and laboratory signs that prompted
to perform genetic testing for MTHFR deficiency. Results: molecular analysis of the MTHFR gene
revealed a genotype compatible with MTHFR deficiency in two NBS-positive newborns and in the
symptomatic patient. This allowed for promptly beginning the adequate metabolic therapy. Con-
clusions: our results strongly support the need for genetic testing to quickly support the definitive
diagnosis of MTHFR deficiency and start therapy. Furthermore, our study extends knowledge of the
molecular epidemiology of MTHFR deficiency by identifying a novel mutation in the MTHFR gene.

Keywords: methylenetetrahydrofolate reductase (MTHFR) deficiency; hereditary metabolic diseases;
newborn screening (NBS) for inborn error of metabolism; genetic test; homocysteine; methionine

1. Introduction

Hereditary metabolic diseases are heterogeneous congenital disorders, caused by
deficiency of a specific metabolic pathway, often leading to early neonatal mortality due
to irreversible damage in several organs and apparatus, with neuro-motor and cerebral
disabilities. Early diagnoses may have a crucial role in the efficacy of the treatment in order
to avoid clinical injury [1–3].

Deficiency of 5,10-Methylenetetrahydrofolate reductase (MTHFR) is a very rare and
severe hereditary defect of folate metabolism with autosomal recessive inheritance, and
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is included in newborn screening (NBS) programs for the identification of inborn error of
metabolism in many countries [4–7]. MTHFR deficiency (OMIM#607093) appears typically
in the neonatal period, with severe neurological signs, recurrent apnea, microcephaly,
encephalopathy, hypotonia, and seizures, although late onset forms of MTHFR deficiency
showing seizures, cognitive impairment, neuropathy and psychiatric disorder are also
known [8–11]. The enzyme MTHFR (EC 1.5.1.20) catalyzes the NADPH-dependent conver-
sion of 5,10-methylenetetrahydrofolate (5,10-MTHF) to 5-methyltetrahydrofolate (5-MTHF),
using Flavin Adenine Dinucleotide (FAD) as a cofactor. The 5-MTHF serves as donor
of the methyl group in the remethylation of homocysteine to methionine, catalyzed by
methionine synthase (MS) which uses vitamin B12 as a cofactor. Methionine is then con-
verted into S-adenosyl methionine (SAM), a universal methyl donor, essential for DNA
and RNA methylation and for the synthesis of creatine, phospholipids and many neuro-
transmitters [12] (Figure 1). Accordingly, MTHFR deficiency is associated with a defect
in folate processing, resulting in hypomethioninemia and hyperhomocysteinemia in af-
fected patients [13]. Methionine is the NBS primary marker which highlights the MTHFR
deficiency.
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Figure 1. Methionine’s methylation pathway. BHMT: Betaine-Homocysteine Methyltransferase;
CBS: Cystathionine β-Synthase; CTH: Cystathionine γ-Lyase; MS: Methionine synthase; MTHFR:
5,10-Methylenetetrahydrofolate reductase.

Mutations in the MTHFR gene (NM_005957.5; ID: 4524; 1p36.22) involving both the
N-terminal catalytic and C-terminal regulatory enzyme domains have been associated
with MTHFR deficiency [14–16]. About 200 different pathogenic variants have currently
been described in the MTHFR gene (Figure 2), and only a few hundred patients have
been reported worldwide [8,17,18]. In addition, two common MTHFR variants, namely
c.665C>T p.(Ala222Val, rs1801133) and c.1286A>C p.(Glu429Ala, rs1801131), affecting
amino acid residues localized within the catalytic and regulatory domains of the MTHFR
enzyme, respectively, have been associated with a mild form of MTHFR deficiency and are
known genetic risk factors for thrombophilia [19]. The c.665C>T polymorphism encodes a
thermolabile enzyme (65% of residual enzymatic activity for heterozygotes and 30% for ho-
mozygotes), which is correlated to a slightly higher level of homocysteine. The c.1286A>C
polymorphism in compound heterozygosity with c.665C>T results in a functional impact
similar to that caused by the c.665C>T homozygous genotype [16,20].
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To date, few studies report the prevalence of 5,10-methylenetetrahydrofolate reductase
deficiency on expanded newborn screening in Europe. In 2018, Gramer et al. published
the results of the study “Newborn Screening 2020”, started at the Newborn Screening
Center, Heidelberg, in August 2016 [21]. Among the 68,418 participants in the study,
one newborn was affected by MTHFR deficit. Later, David et al. published the results
of the NBS program in the Czech Republic from 1 January 2010 to 31 December 2017,
which covered 888,891 neonates. In this large cohort of screened newborns, no infants
were diagnosed as affected by MTHFR deficiency [22]. Finally, NBS conducted in Italy
between January 2019 and December 2020 diagnosed three affected neonates among the
806,769 screened globally [7]. However, none of the aforementioned studies discussed the
molecular characterization of the patients.

The aim of this study was to analyze the epidemiology of MTHFR deficiency screened
by NBS in the Campania region, following the introduction of extended newborn screening
(study period: 2017–2022). Particularly, we discuss the key role of the genetic test to achieve
the definitive diagnosis of this rare but very severe disease.

2. Materials and Methods

Written informed consent to perform genetic analysis and for the publication of data
was obtained from the parents, for themselves and for the newborns. All procedures were
in accordance with the standards of the Ethics Committees on human experimentation
(Institutional and national) and with the Helsinki Declaration [23] and were approved by
the local Ethics Committee.

2.1. Newborn Screening

Newborn metabolic screening and genetic analysis (see Section 2.2) were performed
at CEINGE_Biotecnologie Avanzate Franco Salvatore (Naples, Italy), which is Unique
Regional Center for Newborn Screening in Campania and Regional Reference Center of the
National Health Service for Clinical Molecular Biology, Laboratory Genetics.

The newborn blood sample was obtained by heel prick and spotted on a Schleicher &
Schuell 903 grade filter paper sampling card (Whatman, Dassel, Germany). Blood collection
for newborn screening is recommended between 48 and 72 h of life. Dried blood spot
samples were delivered daily by courier to the laboratory [24]. The analytic protocol
provided for the extraction of amino acids and acylcarnitines identified as biomarkers of
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the inborn errors of metabolism subject to screening, as institutionalized by Italian law
(2016–2017). The analysis was carried out by LC-MS/MS as described before [2,25]. The
results of the screening test are considered “positive” if the value of one or more biomarkers
is above or below the reference upper or lower cutoff. The laboratory periodically reviews
the cutoffs, taking into account the percentiles distribution of each analyte and the values
observed in the false positive subjects. The latest analysis of false positives relates to the
three-year period 2019–2021. Whole blood and serum were collected and stored between
2 and 8 ◦C. Fresh urine samples were collected in a test tube and stored frozen. Serum
amino acid determination by HPLC was carried out as described before [26].

2.2. Genetic Analysis

Genomic DNA was extracted from peripheral blood of the probands and their parents,
as previously described [27].

We analyzed probands collected before June 2020 by Sanger sequencing, using poly-
merase chain reaction amplification of all 12 exons, the exon-intron boundaries and the
5′- and 3′-UTR regions of MTHFR gene. Since June 2020, we performed next-generation
sequencing (NGS), using a home-made target panel of 147 genes, which allows genetic
diagnosis of the 47 hereditary metabolic disorders subjected to newborn screening in Italy,
including MTHFR deficiency. DNA sequencing, variants filtering, and prediction of disease-
causing variants were performed as previously described [28]. In the last decade, NGS has
proved to be an effective molecular strategy showing good diagnostic sensitivity [29].

The patients’ sequences were compared with the GenBank® reference sequence of
MTHFR (NG_013351.1; NM_005957.5). Furthermore, genetic variants detected in the pa-
tients were screened, by Sanger sequencing, in their parents, to verify the family segregation.

To search for gene macrodeletions in apparently negative patients, we calculated the
diagnostic index (ID) by normalizing the reads number of the target regions (exons of
MTHFR gene) to a double dose internal control and then to the media of three controls
analyzed in the same batch. The DI for deleted exons is between 0.4 and 0.6 [30].

2.3. Bioinformatics Analysis

To predict the possible pathogenicity of the novel detected variant in silico, bioinfor-
matic analysis was performed by using the Alamut Visual Software (Interactive Biosoftware;
http://www.interactive-biosoftware.com/, accessed on 14 December 2022) and VarSome:
The Human Genomic Variant Search Engine [31] (https://varsome.com, accessed on 14
December 2022). Several studies have shown the efficacy of bioinformatics analysis to
verify the pathogenicity of new variants [32,33]. Novel variants were classified according
to the American College of Medical Genetics and Genomics (ACMG) guidelines [34].

2.4. Homology Modelling

We produced an automated full-length protein structural prediction homology mod-
elling of MTHFR enzyme, using the protein sequence P42898 from Uniprot database,
corresponding to the isoform 1 of protein. Structural predictions of MTHFR wild-type
(WT) and MTHFR Leu590Arg mutant protein were carried out using I-TASSER (Iterative
Threading ASSEmbly Refinement) server, including X-RAY structure of human MTHFR
(6FCX PDB) as template (http://zhanglab.ccmb.med.umich.edu/I-TASSER, accessed on
19 December 2022) [35]. To overlap WT and mutant protein structures, the PDB files,
obtained from I-TASSER server, were visualized with PyMOL Molecular Graphics System
(The PyMOL Molecular Graphics System, Version 2.0 Schrödinger, LLC, New York, NY,
USA) [36].

3. Results
3.1. Clinical and Biochemical Findings

Screening for inborn errors of metabolism was institutionalized in Italy by law between
2016 and 2017 (Law 167/2016, DM 13 October 2016, DPCM 12-1-2017). The DM 13 October

http://www.interactive-biosoftware.com/
https://varsome.com
http://zhanglab.ccmb.med.umich.edu/I-TASSER
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2016 states that the screening program is a system articulated into four main functions (the
screening laboratory, the laboratory for confirmatory diagnosis, the clinical centers, the
regional coordination/supervision), defines the panel of screening conditions, the timing
for specimen collection, the screening methodology, the confirmatory tests and the clinical
follow up.

Here we report results of the screening for MTHFR deficiency in Campania Region in
the period from 1 January 2017 to 31 December 2022, during which 249,642 newborns were
screened at our center.

Neonatal metabolic screening identified four newborns, all in term-born (between
37 and 41 weeks of gestation) and with normal weight (2500–4200 g), showing low methio-
nine and high homocysteine values (as second-tier testing, Table 1). Following NBS results,
the four newborns were admitted to the Day Hospital of the Department of Translational
Medical Sciences, Section of Pediatrics, University Federico II, Naples (Italy). At the time
of the first clinical evaluation, all the newborns showed good general condition and unre-
markable neurological examination. The second-level serum tests, performed within one
month after birth, showed low methionine and hyperhomocysteinemia in patient 1 and
borderline/normal methionine in combination with confirmed hyperhomocystinemia in
patients 2, 3 and 4 (Table 1). The acylcarnitine profile, urinary organic acids measurements,
base-acid balance, biochemical profile, blood count, and folate and vitamin B12 resulted in
the reference range in three out of four patients. In patient 4, vitamin B12 levels were very
low, due to maternal B12 deficiency, urinary and plasma methylmalonic acid were consis-
tently increased (Supplementary Table S1). In the light of biochemical findings, a severe
deficiency of MTHFR was suspected in patients 1 and 3, prompting to require molecular
analysis looking for MTHFR pathogenic variants. Molecular analysis of a panel of genes
associated with hyperhomocysteinemia, including MTHFR gene, was also required for
patients 2 and 4, in order to achieve the definitive diagnosis.

Table 1. Biochemical and molecular results detected in five patients suspected for MTHFR deficiency
in years range 2017–2022.

Biochemical Markers Molecular Analysis

Patient
(Date of Birth)

DBS (I Spot) DBS (II Spot) Serum Tests HGVS §

cDNA
HGVS §

Protein

Variant Classification

Met * Hcy # Met * Hcy # Met ** Hcy # ClinVar HGMD §§ ACMG §§§

Patient 1
(20 February

2018)
4 53.7 6 42.3 10 106.7

c.176G>C
c.665C>T

c.1286A>C
c.1769T>G

p.Trp59Ser
p.Ala222Val
p.Glu429Ala
p.Leu590Arg

P
LB (DR)

CI
NR

CM155512
CM950819
CM981315

NR

LP
B
B

LP

Patient 2
(7 February 2020) 5.5 4.4 9 5.11 31 14.7 c.665C>T

c.1286A>C
p.Ala222Val
p.Glu429Ala

LB (DR)
CI

CM950819
CM981315

B
B

Patient 3
(20 October 2020) 5.07 11 8.6 16.3 29 53.1 c.1320G>A

c.1683G>A

p.Ser440 =
(splicing)

p.Trp561Ter

P/LP
P

CM155527
CM155520

LP
P

Patient 4
(24 July 2022) 5.6 9.2 8 7 23 54.5 c.665C>T

c.1160G>A
p.Ala222Val
p.Gly387Asp

LB (DR)
NR

CM950819
CM000527

B
VUS

Patient born before the introduction of NBS

Patient 5
(1 August 2009) NP NP NP NP NP

423 pre
therapy

27.9 during
therapy

c.665C>T
c.973C>T

c.1970G>C

p.Ala222Val
p.Arg325Cys

p.Ter657Serext*50

LB (DR)
VUS
LB

CM950819
CM950822
CM035841

B
LP
LP

*: lower cutoff 6 µmol/L; #: upper cut-off: 4 µmol/L; **: rv 10–60 µmol/L (<1 month), 9–42 µmol/L (>1 month);
§: human sequence variant nomenclature; §§: human genetic mutation database; §§§: American College of Medical
Genetics and Genomics classification; DBS: dry blood spot; Met: methionine; Hcy: homocysteine; NP: not
performed; NR: not reported; LP: likely pathogenic; P: pathogenic; LB: likely benign; VUS: variant of uncertain
significance; CI: conflicting interpretation; B: benign; DR: drug response; NBS: newborn screening. Pathologic
data are in red. Novel mutation in bold. All variants are at heterozygous state except the homozygous c.665C>T
detected in patient 5.

In agreement with the hypothesis of a severe MTHFR deficiency, a therapeutic regimen
including high-dose oral 5-methyltetrahydrofolate and betaine was started in two out of
four patients identified at the neonatal metabolic screening (Supplemental Table S1). For
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patient 1, an additional hydroxycobalamin supplementation was temporarily added, as
serum vitamin B12 levels were unknown. For one patient (patient 4) therapy with par-
enteral hydroxocobalamin and carnitine was started, based on the evidence of increased
methylmalonic acid; a suspicion of maternal B12 deficiency was based on patient’s and
mother’s extremely low B12 blood levels, that could be related to the biochemical anoma-
lies, in combination with normal levels of methionine on HPLC amino acids analysis.
Detail of therapeutic regiment is shown in the Supplementary Table S1. During the same
period, a 12-year-old girl came into the observation of pediatricians due to neurological
regression with progressive loss of cognitive and motor skills, appearance of numbness
and hypertonicity of the lower limbs and mild intellectual disability. She had not been
screened by NBS (born in 2009); metabolic investigations showed marked hyperhomocys-
teine associated with low levels of plasmatic methionine (Pt 5 in Table 1), which prompted
pediatricians to request genetic testing for MTHFR deficiency and to start therapy with
5-methyltetrahydrofolate (45 mg/die), betaine (250 mg/kg/die) and vitamin B complex.

3.2. Molecular Analysis of the MTHFR Gene and In Silico Evaluation of the Novel Variant

Sequencing of the coding region of MTHFR gene revealed a genotype compatible
with the definitive diagnosis of MTHFR deficiency in two NBS positive newborns (Pt 1,
3 Table 1) and in patient 5, born before the introduction of extended NBS (Pt 5, Table 1).
Segregation analysis confirmed that the two mutated alleles were in trans (Figure 3) in
all affected patients. Patients 1 and 5 showed, also, the c.665C>T polymorphism, in com-
pound heterozygosity with the c.1286A>C polymorphism or in homozygosity, respectively
(Table 1).
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Patients 3 and 5 had known pathogenic variants (Table 1). Of note, patient 3 carried
the synonymous c.1320G>A variant, which is predicted to alter the splicing process and
cause a premature termination of translation [15].

Patient 1 was compound heterozygous for two missense variants, namely c.176G>C
p.(Trp59Ser) and c.1769T>G p.(Leu590Arg). The first is a known disease-causing mu-
tation that affects an amino acid residue matching to the enzyme’s catalytic domain
(Figure 3D). In contrast, the c.1769T>G, p.(Leu590Arg), substitution, which maps in the
regulatory region of the protein (Figure 3D), has not previously been reported in liter-
ature as associated to MTHFR deficiency. The c.1769T>G variant was absent from any
of the following databases of public mutations and genetic variants databases: HGMD
(http://www.hgmd.cf.ac.uk/ac/index.php, accessed on 14 December 2022) [37]; ClinVar
(https://www.ncbi.nlm.nih.gov/clinvar/, accessed on 14 December 2022) [38]; National
Center for Biotechnology Information (NCBI) (https://www.ncbi.nlm.nih.gov, accessed on
14 December 2022); 1000 Genome Project (http://www.internationalgenome.org/, accessed
on 14 December 2022); Exome Sequencing Project (ExAC, http://evs.gs.washington.edu/
EVS/, accessed on 14 December 2022) [39–41]; and Exome Genome Aggregation Database
(http://gnomad.broadinstitute.org, accessed on 14 December 2022). We used the ACMG
guidelines [34] to establish pathogenicity of the novel c.1769T>G variant identified in
the MTHFR gene. In silico computational analysis predicted a pathogenic effect, with a
high level of confidence, the substitution being classified as “disease causing”. Finally,
segregation analysis showed that the variant c.1769T>G (paternally inherited) was in trans
with the known pathogenic one (c.176G>C, maternally inherited). In agreement with these
criteria, the novel c.1769T>G p.(Leu590Arg) variant can be classified as likely pathogenic.
Interestingly, parents’ molecular analysis indicated that the c.1769T>G substitution was
in cis with the c.665C>T polymorphism, whereas c.176G>C was in cis with c.1286A>C
common variant.

We also predicted the secondary structures of MTHFR WT and MTHFR-Leu590Arg
proteins, using the I-TASSER server. Both WT and mutant structures had the same structural
similarity to the top ten proteins from the PDB that I-TASSER selected. The superimposed
structures performed by PyMol showed a perfect match between WT and Leu590Arg
proteins (Figure 4), with a very low RMSD (root-mean-square deviation of atomic positions)
value of 1.143. Moreover, I-TASSER reported similar ligand binding target proteins for both
wild type and mutant MTHFR proteins.

The other two NBS positive newborns (Patients 2 and 4, Table 1) carried the c.665C>T
polymorphism in compound heterozygosity with the c.1286A>C polymorphism or the
c.1160G>A mutation, respectively. In these subjects, we performed a quantitative analysis
of the NGS data (coverage) relative to the exon regions of MTHFR gene and, in all cases,
we obtained DI between 0.87 and 1.2, thereby excluding the presence of MTHFR gene
macrodeletions.

http://www.hgmd.cf.ac.uk/ac/index.php
https://www.ncbi.nlm.nih.gov/clinvar/
https://www.ncbi.nlm.nih.gov
http://www.internationalgenome.org/
http://evs.gs.washington.edu/EVS/
http://evs.gs.washington.edu/EVS/
http://gnomad.broadinstitute.org
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of MTHFR have been prepared with PyMOL.

4. Discussion

Deficiency of 5,10-methylenetetrahydrofolate reductase (MTHFR) is an autosomal
recessive disorder affecting the remethylation of homocysteine into methionine. In fact, the
MTHFR enzyme supplies the endogenous substrate of the methionine synthase enzyme,
i.e., the 5-MTHF, a critical methyl donor source in the remethylation of homocysteine
into methionine. MTHFR deficiency can occur in neonatal or adolescence/adult-onset
form, showing varying severity of disease, ranging from neonatal lethal to adult onset.
However, the disorder is particularly responsive to early folate and betaine treatment;
notably, treatment with mefolinate but not folic acid or folinic acid is effective to increase
the methyltetrahydrofolate levels in the liquor, possibly preventing neurological damage
(50). Indeed, promptly diagnosed and treated patients show a better clinical outcome with
less mortality or severe organ complications [42–44]. Therefore, methylenetetrahydrofolate
reductase deficiency is included in most newborn screenings worldwide [4]. From 2016,
in Italy, the NBS comprises the screening for 47 hereditary metabolic diseases, including
MTHF deficiency.

Generally, following the reduced Met level at the first test of screening and the increase
of Hcy at the second tier tests, the definitive diagnosis takes advantages from molecular
investigation, which identifies the genetic variations responsible for the disease, allows the
couple to have genetic counselling and, as for other inherited diseases, access to prenatal
diagnosis [45–47].

In this paper, we present the results of metabolic and genetic analysis of four new-
borns suspected to have MTHFR deficiency after NBS results, during 6 years (2017–2022)
following the introduction of extended newborn screening in Italy. Within the study
period, 249,642 newborns were screened. Of note, the introduction of the second-tier
homocysteine in 2019 significantly reduced the false-positive rate for hypomethioninemia,
which decreased from 0.028% (pre-second-tier homocysteine) to 0.00055% (post-second-tier
homocysteine).
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One patient, born before the introduction of extended NBS, was recruited based on
neurological symptoms and metabolic investigation, showing increased plasma homocys-
teine levels.

In all cases a panel of biochemical investigations, including vitamin B12 levels, pro-
pionylcarnitine, and urinary methylmalonic acid was performed to consider differential
diagnosis. The values of folate, medium corpuscular volume, acylcarnitines (in particular,
the propionylcarnitine) were in the reference range in all patients at the first evaluation.
Normal levels of methylmalonic acid and vitamin B12 allowed to exclude the diagnosis of
methylmalonic acidemia due to intracellular synthesis defects of vitamin B12, and also a
maternal deficiency of vitamin B12 in three out of four patients; patient 4 showed increased
levels of MMA in combination with extremely low-levels of serum vitamin B12, both in the
infant and in her mother, suggesting a maternal vitamin B12 deficiency.

In three patients, molecular analysis unveiled two pathogenic/likely pathogenic
variants in the MTHFR gene, compatible with the definitive diagnosis of severe MTHFR
deficiency. Two of them were identified by NBS, showing a cumulative incidence of this
metabolic disorder in Campania Region of 2:249,642 newborns in six years. National
data reported an incidence of 1:268923 [7]. For the third affected patient, an adolescent
born in the pre-screening era with a history of psychomotor development delay and
hyperhomocysteinemia, the molecular analysis was instrumental in reaching the definitive
diagnosis.

Two of the three patients who tested positive to the molecular analysis were compound
heterozygous for known pathogenic variants (3 and 5 in Table 1); on the contrary, patient
1 was a compound heterozygous with one allele carrying the novel likely pathogenetic
variant c.1769T>G, p.(Leu590Arg). In particular, patient 1 carried on the other allele the
known mutation c.176G>C, p.(Trp59Ser), which falls within the catalytic N-terminal domain
of the MTHFR enzyme. Pathogenic changes in this domain usually affect the NADPH
binding and cause MTHFR deficiency. In agreement, this variant is associated with a
severe decrease in enzymatic activity, resulting in early onset of symptoms and death
within the first year of life [17]. The new variant c.1769T>G, p.(Leu590Arg), identified in
patient 1 was classified as likely pathogenetic according to the ACMG criteria [34]. It falls
within the regulatory domain of the enzyme, which likely contributes to NADPH binding
and includes the binding site for SAM, the allosteric inhibitor of MTHFR. As mutations
in the regulatory domain can impair the binding with SAM and alter the mechanism of
inhibition of the MTHFR enzyme [15,48], we used a bioinformatics approach to predict
a three-dimensional structure model of MTHFR WT and MTHFR Leu590Arg proteins,
and did not identify significant differences in the overall structure by comparing the WT
and MTHFR Leu590Arg models. However, the modelling highlighted that Leu590, a well-
conserved residue across distant species such as mammals and even zebrafish D. Rerio, is
buried in MTHFR structure. Moreover, it is encoded by the exon 11, which is a hot-spot
of mutations that severely affect the MTHFR regulatory region [17]. The replacement of
the apolar leucine with a positively charged arginine could destabilize the high ordered
three-dimensional structure of the molecule, leading to its unfolding and inactivation.

In addition to pathogenetic/likely pathogenetic variants, patients 1 and 5 also showed a
compound heterozygosity for the two well studied polymorphisms [16] c.665C>T p.(Ala222Val)
[MAF (Minor allele frequency) 30%)] and c.1286A>C p.(Glu429Ala) (MAF: 29%), or homozy-
gosity for the c.665C>T polymorphism, respectively. As in other diseases, polymorphisms
may have functional effects [49]. In particular, c.665C>T and c.1286A>C polymorphisms
cause a mild reduced MTHFR activity and are known genetic risk factors in thrombophilia,
either in the homozygous or compound heterozygous state [20]. In particular the c.665C>T
polymorphism encodes a thermolabile MTHFR enzyme, due to reduced FAD binding,
resulting in dissociation of the holoenzyme into active monomers [50,51]. The polymor-
phism is associated with 30% and 65% of residual enzyme activity in homozygotes and
heterozygotes, respectively, and with mildly elevated plasma homocysteine levels [20]. The
presence on the same allele of the c.665C>T polymorphism and a deleterious mutation
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further decreases the residual MTHFR activity respect to those caused by the mutation
alone [15]. Our patients show the c.665C>T polymorphism in cis with the novel vari-
ant c.1769T>G (patient 1), or in cis with the known mutations c.973C>T and c.1970G>C
(patient 5), suggesting a possible synergy between these mutations and the polymorphism.

The two patients diagnosed in the neonatal period, according to the most recent and
accepted guidelines, started a therapy with betaine, 5-methyltetrahydrofolate and variable
parenteral hydroxocobalamin (which was discontinued at three months in patient 1). In
fact, early treatment with a combination of high dose mefolinate and betaine prevents
mortality and allows normal psychomotor development in patients with severe MTHFR
deficiency [42–44,52]. Their clinical monitoring, over 24–48 months (patient 3 and 1, re-
spectively), showed adequate weight gain and no signs and/or symptoms associated with
the disease. Patient 5 was diagnosed after acute neurological episodes and started prompt
therapy with 5-methyltetrahydrofolate and vitamin B complex, with only partial homo-
cysteine response. The therapy was then implemented with betaine supplementation after
evaluation in our metabolic unit with further drop in homocysteine values. The clinical
improvement has been slower. The patient has regained most of her cognitive ability and
personal autonomy but lower limb spasticity and walking difficulties remained. However,
no other acute neurological episode has been described. The clinical outcome of patient 5
clearly demonstrates the importance of initiating therapy in the pre-symptomatic period to
prevent disease complications and progression of the damage.

Genetic counselling was offered to all families. Family segregation showed that all
relatives of probands carried one mutation in the MTHFR gene; in a subsequent pregnancy,
one at-risk couple also required prenatal diagnosis, which diagnosed the presence of a fetus
heterozygous for the disease. Furthermore, family genotyping also identified additional
subjects who were carriers of a genetic risk factor for thrombophilia.

The other two neonates with positive NBS results were not affected by severe MTHFR
deficiency: they were compound heterozygous for the two polymorphisms c.665C>T and
c.1286A>C, and the c.665C>T polymorphism and a known mutation in the MTHFR gene,
respectively. These genotypes determine a mild reduction in enzyme activity that can be
unveiled by newborn screening. In addition, patient 4 suffered of maternal vitamin B12
deficiency, which likely contributes to extremely high hyperhomocysteinemia in combina-
tion with high excretion of methylmalonic acid. However, considering the initial Hcy value
and the small possibility that sequencing analysis missed the variant on the second allele,
paediatricians continued the clinical follow-up of patient 4 for three months before losing
the patient to follow up. Last evaluation of homocysteine level after hydroxcobalamin
therapy showed normal value. We concluded for a diagnosis of vitamin B12 deficiency,
from maternal origin, but the role of the heterozygous MTHFR gene variant in the neonatal
homocysteine elevation cannot be excluded.

5. Conclusions

In summary, this paper presents the first descriptions in Europe of MHTFR variants
detected after implementation of the expanded NBS. Second tier tests detecting hyperhomo-
cysteinemia are widely applied with good results. However, accurate and timely molecular
diagnosis is a key aspect to achieve the definitive diagnosis of MTHFR deficiency, after a
positive result at NBS and it is crucial for clinical management and therapeutic choices. In
fact, the definitive diagnosis allows making targeted therapeutic choices, with high-dose
mefolinate and betaine, which may improve outcome in pre-symptomatic patients [53]. In
addition, genetic testing is instrumental to reach definitive MTHFR deficiency diagnosis
also in symptomatic adolescence/adult patients. These patients may manifest isolated
neurological/psychiatric symptoms, which may delay the achievement of the diagnosis;
however, metabolic treatment may stabilize or improve symptoms [11]. The key role of
genetic testing in reaching the definitive diagnosis opens the door to a possible “genotype-
first” approach in newborns/children presenting with hyperhomocysteinemia. In the
era of precision medicine, molecular analysis of a targeted genes panel associated with
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hyperhomocysteinemia, including MTHFR gene, should be the first-tier genetic test for
newborns/children suspected to have an inherited remethylation disorders. Furthermore,
genetic diagnosis allows identification of carriers within families: this issue is very impor-
tant to identify subjects having an increased risk of venous thromboembolism, also. Finally,
the identification of a novel pathogenic gene variant enlarges the mutation spectrum of the
MTHFR gene, although most mutations in the MTHFR gene are private.

Our data confirm that the incidence and prevalence of this rare disease are very low
also in the population of the Campania region, in accordance with national data [7].

Finally, the results here presented reflect the benefits of close collaboration among
screening, confirmation laboratories and metabolic pediatricians for the efficacy of newborn
screening programs.

Supplementary Materials: The following supporting information can be downloaded at: https:
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