25,276 research outputs found

    Head-up transition behavior of pilots with and without head-up display in simulated low-visibility approaches

    Get PDF
    To quantify head-up transition behavior with and without a flightpath type head-up display, eight rated B-727 pilots each flew 31 manual and coupled approaches in a simulator with B-727 dynamics and collimated model board external scene. Data were also obtained on the roll played by the head-up display in the coupled-to-manual transition. Various wind shears, low visibilities, and ceilings were tested along with unexpected misalignment between the runway and head-up display symbology. The symbolic format used was a conformal scene. Every pilot except one stayed head-up, flying with the display after descending below the ceiling. Without the display and as altitude decreased, the number of lookups from the instrument panel decreased and the duration of each one increased. No large differences in mean number or duration of transitions up or down were found during the head-up display runs comparing the no-misalignment with the lateral instrument landing system offset misalignment runs. The head-up display led to fewer transitions after the pilot made a decision to land or execute a missed approach. Without the display, pilots generally waited until they had descended below the ceiling to look outside the first time, but with it several pilots looked down at their panel at relatively high altitudes (if they looked down at all). Manual takeover of control was rapid and smooth both with and without the display which permitted smoother engine power changes

    Evaluation of FIDC system

    Get PDF
    A fuel vapor injector/igniter system was evaluated for its effect on automobile engine performance, fuel economy, and exhaust emissions. Improved fuel economy and emissions, found during the single cylinder tests were not realized with a multicylinder engine. Multicylinder engine tests were conducted to compare the system with both a stock and modified stock configuration. A comparison of cylinder-to-cylinder equivalence ratio distribution was also obtained from the multicylinder engine tests. The multicylinder engine was installed in a vehicle was tested on a chassis dynamometer to compare the system with stock and modified stock configurations. The fuel vapor injector/igniter system (FIDC) configuration demonstrated approximately five percent improved fuel economy over the stock configuration, but the modified stock configuration demonstrated approximately twelve percent improved fuel economy. The hydrocarbon emissions were approximately two-hundred-thirty percent higher with the FIDC system than with the stock configuration. Both the FIDC system and the modified stock configuration adversely affected driveability. The FIDC system demonstrated a modest fuel savings, but with the penalty of increased emissions, and loss of driveability

    Observation of the March Maximum in the Daemon Flux from Neos in the Year 2005: New Efforts and New Effects

    Full text link
    The experiments of 2005 aimed at detection of low-velocity (~10-15 km s-1) daemons falling on to the Earth's surface from Near-Earth, Almost Circular Heliocentric Orbits (NEACHOs) have corroborated once more the existence of the March maximum in their flux by raising its confidence level to 99.99%. In addition, these experiments permitted us to identify several FEU-167-1-type PM tubes, with a few times thicker inner Al coating, which appear to be capable to detect, without any scintillator, the crossing of negatively charged daemons. As a result, detection efficiency increases tens of times, thus raising the measured level of the March daemon flux to f > 0.5E-7 cm-2s-1.Comment: 14 page

    Head-on collisions of black holes: the particle limit

    Get PDF
    We compute gravitational radiation waveforms, spectra and energies for a point particle of mass m0m_0 falling from rest at radius r0r_0 into a Schwarzschild hole of mass MM. This radiation is found to lowest order in (m0/M)(m_0/M) with the use of a Laplace transform. In contrast with numerical relativity results for head-on collisions of equal-mass holes, the radiated energy is found not to be a monotonically increasing function of initial separation; there is a local radiated-energy maximum at r04.5Mr_0\approx4.5M. The present results, along with results for infall from infinity, provide a complete catalog of waveforms and spectra for particle infall. We give a representative sample from that catalog and an interesting observation: Unlike the simple spectra for other head-on collisions (either of particle and hole, or of equal mass holes) the spectra for >r0>5M\infty>r_0>\sim5M show a series of evenly spaced bumps. A simple explanation is given for this. Lastly, our energy vs. r0r_0 results are compared with approximation methods used elsewhere, for small and for large initial separation.Comment: 15 pages, REVTeX, 25 figure

    Electrocardiographic safety evaluation of dihydroartemisinin piperaquine in the treatment of uncomplicated falciparum malaria.

    Get PDF
    Dihydroartemisinin-piperaquine (DP) could become a leading fixed combination malaria treatment worldwide. Although there is accumulating evidence of efficacy and safety from clinical trials, data on cardiotoxicity are limited. In two randomized controlled trials in Thailand, 56 patients had ECGs performed before treatment, 4 hours after the first dose, and 4 hours after the last dose. The mean (95% CI) changes in QTc interval (Bazett's correction) were 2 (-6 to 9) ms and 14 (7 to 21) ms, respectively. These small changes on the third day of treatment are similar to those observed elsewhere in the convalescent phase following antimalarial treatment with drugs known to have no cardiac effects and are therefore likely to result from recovery from acute malaria and not the treatment given. At therapeutic doses, DP does not have clinically significant effects on the electrocardiogram

    Applying black hole perturbation theory to numerically generated spacetimes

    Get PDF
    Nonspherical perturbation theory has been necessary to understand the meaning of radiation in spacetimes generated through fully nonlinear numerical relativity. Recently, perturbation techniques have been found to be successful for the time evolution of initial data found by nonlinear methods. Anticipating that such an approach will prove useful in a variety of problems, we give here both the practical steps, and a discussion of the underlying theory, for taking numerically generated data on an initial hypersurface as initial value data and extracting data that can be considered to be nonspherical perturbations.Comment: 14 pages, revtex3.0, 5 figure

    Hubble Space Telescope and Ground-Based Optical and Ultraviolet Observations of GRB010222

    Get PDF
    We report on Hubble Space Telescope WFPC2 optical and STIS near ultraviolet MAMA observations, and ground-based optical observations of GRB010222, spanning 15 hrs to 71 days. The observations are well-described by a relativistic blast-wave model with a hard electron-energy distribution, p = 1.57, and a jet transition at t_j=0.93 days. These values are slightly larger than previously found as a result of a correction for the contribution from the host galaxy to the late-time ground-based observations and the larger temporal baseline provided by the Hubble Space Telescope observations. The host galaxy is found to contain a very compact core (size <0.25 arcsec) which coincides with the position of the optical transient. The STIS near ultraviolet MAMA observations allow for an investigation of the extinction properties along the line of sight to GRB010222. We find that the far ultraviolet curvature component (c_4) is rather large. In combination with the low optical extinction A_V =0.11 mag, when compared to the Hydrogen column inferred from X-ray observations, we suggest that this is evidence for dust destruction.Comment: ApJ, in pres

    High-powered Gravitational News

    Get PDF
    We describe the computation of the Bondi news for gravitational radiation. We have implemented a computer code for this problem. We discuss the theory behind it as well as the results of validation tests. Our approach uses the compactified null cone formalism, with the computational domain extending to future null infinity and with a worldtube as inner boundary. We calculate the appropriate full Einstein equations in computational eth form in (a) the interior of the computational domain and (b) on the inner boundary. At future null infinity, we transform the computed data into standard Bondi coordinates and so are able to express the news in terms of its standard N+N_{+} and N×N_{\times} polarization components. The resulting code is stable and second-order convergent. It runs successfully even in the highly nonlinear case, and has been tested with the news as high as 400, which represents a gravitational radiation power of about 1013M/sec10^{13}M_{\odot}/sec.Comment: 24 pages, 4 figures. To appear in Phys. Rev.
    corecore